Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Books Books 1 - 8 of 8 on ... 1. a + b = b + a. 2. a + (b + c) = (a + b) + c..  
" ... 1. a + b = b + a. 2. a + (b + c) = (a + b) + c. "
A College Algebra - Page 21
by Henry Burchard Fine - 1904 - 595 pages
Full view - About this book

Die Ausdehnungslehre

Hermann Grassmann - Ausdehnugslehre - 1862 - 388 pages
...ci ftbc = (ab) c usw 8. Erklärung. Für extensive Grossen a, b, c gelten die Fundamentalformeln : 1) a + b = b + a, 2) a + (b + c) = a + b + c, 3) a + b — b = a, 4) a — b + b = a. Beweis. Es sei a = Zae, b = 1) a + b = ^öe + jL/Se — JjL(a...
Full view - About this book

Hermann Grassmanns gesammelte mathematische und physikalische werke, Volume 1

Hermann Ernst Grassmann, Eduard Study, Georg Scheffers, Jakob Lüroth, Justus Grassmann - Mathematics - 1894
...Anfang eintreten, also und so weiter. 8. Für extensive Grossen a, b, c gelten die Fundamentalformeln: 1) a + b = b + a, 2) a + (b + c) = a + b + c, 3) a -fb — b = a, 4) a — b -j- 6 ^ a. Beweis. Es sei a = Zae, b = Zße, c = Zye, so ist 1) Z ße...
Full view - About this book

A College Algebra

Henry Burchard Fine - Algebra - 1904 - 595 pages
...natural numbers, we first defined addition as a process — counting forward — and then showed thai; the results of this process have two properties which...the numbers added, namely : 1. a + b = b + a. 2. a + (l> + c) = (a + ft) + c. Similarly we proved that products possess the three general properties :...
Full view - About this book

Lectures on Linear Algebra

I. M. Gel'fand - Mathematics - 1989 - 185 pages
...of linear transformations have some of the properties usually associated with these operations. Thus 1. A + B = B + A; 2. (A + B) + C = A -\- (B + C); 3. A(BC) = (AB)C; ! | (A + B)C = AC + BC, ' ( C(A + B) = CA + CB. We could easily prove these equalities...
Limited preview - About this book

Ausdehnungslehre

Hermann Günther Grassmann - Mathematics - 411 pages
...assembly." Addition and subtraction are thus defined, since first of all the four fundamental formulas 1) a + b = b + a, 2) a + (b + c) = (a + b) + c, 3) a + bb = a, 4) ab + b = a hold; and in addition the magnitudes resulting from the conjunction must...
Limited preview - About this book

Mathematical Techniques for Engineers and Scientists

Larry C. Andrews, Ronald L. Phillips - Mathematics - 2003 - 797 pages
...general, vector addition has the following properties: Figure 4.2 Parallelogram law for vector addition. 1. a + b = b + a 2. a + (b + c) = (a + b) + c 3. K(a + b) = Ka + Kb 4. a + 0 = a 5.a + (-a) = 0 6. a + a = 2a (4) Note that Properties 3 and 6 listed...
Limited preview - About this book

College Algebra

Henry Burchard Fine - Mathematics - 631 pages
...— definitions of new operations. Thus, it would be absurd to attempt to prove that 2(— 3)=— 2-3 with nothing to start from except the definition of...added, namely : 1. a + b = b + a. 2. a + (b + c) = (a + ¿») + c. Similarly we proved that products possess the three general properties : 3. ab = ba. 4....
Limited preview - About this book

Richard Dedekind et les fondements des mathématiques: avec de nombreux ...

Pierre Dugac - Philosophy - 1976 - 334 pages
...à A, alors a + b et a - b appartiennent à A, ayant les propriétés suivantes : (1') a+b = b+a, . (1") a - b = b - a, (2') (a + b) + c = a + (b + c), (2") (a - b) - c = a - (b - c), (3') a + (a - b) = a, (3") a - (a + b) = a. Parmi les exemples de groupe...
Limited preview - About this book




  1. My library
  2. Help
  3. Advanced Book Search
  4. Download PDF