# Degenerate Elliptic Equations

Springer Science & Business Media, Jun 30, 1993 - Mathematics - 431 pages
0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,€) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self - adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self - adjoint operator with discrete spectrum and for the distribu tion functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e))are the distribution functions of the matrix a2m(X,e) : C' -+ CU).

### What people are saying -Write a review

We haven't found any reviews in the usual places.

### Contents

 II 9 III 12 IV 19 V 24 VI 33 VII 37 VIII 40 IX 43
 LV 190 LVI 193 LVII 199 LVIII 202 LIX 203 LX 207 LXI 210 LXII 213

 X 45 XII 50 XIII 56 XIV 59 XV 63 XVI 68 XVII 69 XVIII 70 XIX 75 XX 78 XXI 79 XXII 81 XXIII 85 XXIV 87 XXV 89 XXVI 95 XXVII 98 XXVIII 103 XXX 105 XXXI 108 XXXII 112 XXXIII 123 XXXIV 129 XXXV 131 XXXVI 135 XXXVII 137 XXXVIII 143 XXXIX 145 XL 146 XLI 156 XLII 158 XLIII 162 XLIV 163 XLV 164 XLVII 165 XLVIII 166 XLIX 171 L 174 LI 176 LII 180 LIII 182 LIV 187
 LXIV 216 LXV 225 LXVI 226 LXVII 231 LXVIII 232 LXIX 239 LXX 240 LXXI 245 LXXII 247 LXXIII 249 LXXIV 251 LXXV 255 LXXVI 262 LXXVII 265 LXXVIII 270 LXXIX 272 LXXX 275 LXXXI 279 LXXXII 285 LXXXIII 291 LXXXIV 296 LXXXV 301 LXXXVI 304 LXXXVII 311 LXXXVIII 317 LXXXIX 320 XC 329 XCI 330 XCII 335 XCIII 338 XCIV 344 XCV 355 XCVI 359 XCVII 363 XCIX 366 C 377 CI 389 CII 399 CIII 423 CIV 429 Copyright