Multi-Sensor Data Fusion with MATLAB® (Google eBook)

Front Cover
CRC Press, Dec 16, 2009 - Technology & Engineering - 568 pages
0 Reviews

Using MATLAB® examples wherever possible, Multi-Sensor Data Fusion with MATLAB explores the three levels of multi-sensor data fusion (MSDF): kinematic-level fusion, including the theory of DF; fuzzy logic and decision fusion; and pixel- and feature-level image fusion. The authors elucidate DF strategies, algorithms, and performance evaluation mainly for aerospace applications, although the methods can also be applied to systems in other areas, such as biomedicine, military defense, and environmental engineering.

After presenting several useful strategies and algorithms for DF and tracking performance, the book evaluates DF algorithms, software, and systems. It next covers fuzzy logic, fuzzy sets and their properties, fuzzy logic operators, fuzzy propositions/rule-based systems, an inference engine, and defuzzification methods. It develops a new MATLAB graphical user interface for evaluating fuzzy implication functions, before using fuzzy logic to estimate the unknown states of a dynamic system by processing sensor data. The book then employs principal component analysis, spatial frequency, and wavelet-based image fusion algorithms for the fusion of image data from sensors. It also presents procedures for combing tracks obtained from imaging sensor and ground-based radar. The final chapters discuss how DF is applied to mobile intelligent autonomous systems and intelligent monitoring systems.

Fusing sensors’ data can lead to numerous benefits in a system’s performance. Through real-world examples and the evaluation of algorithmic results, this detailed book provides an understanding of MSDF concepts and methods from a practical point of view.

Select MATLAB programs are available for download on www.crcpress.com

  

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

Chapter 1 Introduction
3
Chapter 2 Concepts and Theory of Data Fusion
11
Chapter 3 Strategies and Algorithms for Target Tracking and Data Fusion
63
Chapter 4 Performance Evaluation of Data Fusion Systems Software and Tracking
157
Fuzzy Logic and Decision Fusion
213
Chapter 5 Introduction
215
Chapter 6 Theory of Fuzzy Logic
217
Chapter 7 Decision Fusion
293
Chapter 9 Introduction
357
Chapter 10 Pixel and FeatureLevel Image Fusion Concepts and Algorithms
361
Chapter 11 Performance Evaluation of ImageBased Data Fusion Systems
415
A Brief on Data Fusion in Other Systems
477
Overview of Data Fusion in Mobile Intelligent Autonomous Systems
479
Chapter 13 Intelligent Monitoring and Fusion
485
Numerical Statistical and Estimation Methods
495
Index
523

Chapter 8 Performance Evaluation of Fuzzy LogicBased Decision Systems
325
Pixel and FeatureLevel Image Fusion
355
Back cover
535
Copyright

Common terms and phrases

About the author (2009)

Jitendra R. Raol is Professor Emeritus at M S Ramaiah Institute of Technology (MSRIT) in Bangalore, India.