** ** Engaging, accessible, and extensively illustrated, this brief, but solid introduction to modern geometry describes geometry as it is understood and used by contemporary mathematicians and theoretical scientists. Basically non-Euclidean in approach, it relates geometry to familiar ideas from analytic geometry, staying firmly in the Cartesian plane. It uses the principle geometric concept of congruence or geometric transformation--introducing and using the Erlanger Program explicitly throughout. It features significant modern applications of geometry--e.g., the geometry of relativity, symmetry, art and crystallography, finite geometry and computation. ** ** Covers a full range of topics from plane geometry, projective geometry, solid geometry, discrete geometry, and axiom systems. ** ** For anyone interested in an introduction to geometry used by contemporary mathematicians and theoretical scientists.