Relational Data Clustering: Models, Algorithms, and Applications (Google eBook)

Front Cover
CRC Press, May 19, 2010 - Computers - 216 pages
0 Reviews

A culmination of the authors’ years of extensive research on this topic, Relational Data Clustering: Models, Algorithms, and Applications addresses the fundamentals and applications of relational data clustering. It describes theoretic models and algorithms and, through examples, shows how to apply these models and algorithms to solve real-world problems.

After defining the field, the book introduces different types of model formulations for relational data clustering, presents various algorithms for the corresponding models, and demonstrates applications of the models and algorithms through extensive experimental results. The authors cover six topics of relational data clustering:

  1. Clustering on bi-type heterogeneous relational data
  2. Multi-type heterogeneous relational data
  3. Homogeneous relational data clustering
  4. Clustering on the most general case of relational data
  5. Individual relational clustering framework
  6. Recent research on evolutionary clustering

This book focuses on both practical algorithm derivation and theoretical framework construction for relational data clustering. It provides a complete, self-contained introduction to advances in the field.


What people are saying - Write a review

We haven't found any reviews in the usual places.

Common terms and phrases

About the author (2010)

Bo Long is a scientist at Yahoo! Labs in Sunnyvale, California.

Zhongfei Zhang is an associate professor in the computer science department at the State University of New York in Binghamton.

Philip S. Yu is a professor in the computer science department and the Wexler Chair in Information Technology at the University of Illinois in Chicago.