The Symmetries of Things

Front Cover
Taylor & Francis, Apr 18, 2008 - Mathematics - 426 pages
1 Review
Start with a single shape. Repeat it in some way—translation, reflection over a line, rotation around a point—and you have created symmetry.

Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments.

This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.

What people are saying - Write a review

LibraryThing Review

User Review  - ztutz - LibraryThing

Have you ever exploited symmetry in your own designs, proofs, or organizational solutions? Of course the answer is "yes": symmetry is one of the deepest principles of human mind. In the form of ... Read full review

About the author (2008)

John H. Conway is the John von Neumann Chair of Mathematics at Princeton University. He obtained his BA and his PhD from the University of Cambridge (England). He is a prolific mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory, and coding theory. He has also contributed to many branches of recreational mathematics, notably the invention of the Game of Life.

Heidi Burgiel is a professor in the Department of Mathematics and Computer Science at Bridgewater State College. She obtained her BS in Mathematics from MIT and her PhD in Mathematics from the University of Washington. Her primary interests are educational technology and discrete geometry.

Chaim Goodman-Strauss is a professor in the department of mathematical sciences at the University of Arkansas. He obtained both his BS and PhD in Mathematics at the University of Texas at Austin. His research interests include low-dimensional topology, discrete geometry, differential geometry, the theory of computation, and mathematical illustration. Since 2004 he has been broadcasting mathematics on a weekly radio segment.

Bibliographic information