Design and analysis: a researcher's handbookThe fourth edition of "Design and Analysis" continues to offer a readily accessible introduction to the designed experiment in research and the statistical analysis of the data from such experiments. Unique because it emphasizes the use of analytical procedures, this book is appropriate for all as it requires knowledge of only the most fundamental mathematical skills and little or no formal statistical background. Topics include: single and twofactor designs with independent groups of subjects; corresponding designs with multiple observations; analysis of designs with unequal sample sizes; analysis of covariance; designs with three factors, including all combinations of betweensubjects and withinsubject factors; random factors and statistical generalization; and nested factors. This book lives up to its name as a handbook, because of its usefulness as a source and guide to researchers who require assistance in both planning a study and analyzing its results. 
What people are saying  Write a review
User ratings
5 stars 
 
4 stars 
 
3 stars 
 
2 stars 
 
1 star 

Review: Design and Analysis: A Researcher's Handbook
User Review  Amy  GoodreadsExcellent reference. Sets up the logic for various tests in a comprehensible way that isn't too mathematical. Read full review
Review: Design and Analysis: A Researcher's Handbook
User Review  GoodreadsExcellent reference. Sets up the logic for various tests in a comprehensible way that isn't too mathematical. Read full review
Contents
An Overview of the Research Enterprise The Role of Statistics in the Behavioral Sciences  12 
SINGLEFACTOR EXPERIMENTS  19 
Control by Randomization An Index for the Evaluation of Treatment Effects  33 
Copyright  
43 other sections not shown
Common terms and phrases
ABC matrix adjusted analysis of covariance analysis of variance assumptions blocking calculations cell means Chapter column Comp comparisons involving completely randomized design computational formulas conducted consider contrast control variable df associated df statement discussed effect of factor equal error variance estimate evaluated EW error rate F distribution F ratio F test factorial experiment given indicates levels of factor linear listed MSSIAB multiple comparisons nested factor null hypothesis number of observations number of subjects Numerical Example obtained orthogonal polynomials particular population portion of Table posthoc comparisons procedure quadratic quantity random independent variables regression repeated factors repeatedmeasures design represented Scheffe test significant simple main effects singlefactor experiment sources of variance specific statistical sums of squares task threeway interaction total number treatment conditions treatment effects treatment groups treatment means trend components Tukey twofactor twoway interactions type I error weighted means withingroups mean square x B interaction