Computational Methods for Electromagnetics

Front Cover
Wiley, 1998 - Science - 564 pages
0 Reviews
Computational Methods for Electromagnetics is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment. Employing a unified coherent approach that is unmatched in the field, the authors detail both integral and differential equations using the method of moments and finite-element procedures. In addition, readers will gain a thorough understanding of numerical solution procedures.

Topics covered include:

  • Two- and three-dimensional integral equation/method-of-moments formulations
  • Open-region finite-element formulations based on the scalar and vector Helmholtz equations
  • Finite difference time-domain methods
  • Direct and iterative algorithms for the solutions of linear systems
  • Error analysis and the convergence behavior of numerical results
  • Radiation boundary conditions
  • Acceleration methods for periodic Green's functions
  • Vector finite elements
Detail is provided to enable the reader to implement concepts in software and, in addition, a collection of related computer programs are available via the Internet. Computational Methods for Electromagnetics is designed for graduate-level classroom use or self-study, and every chapter includes problems. It will also be of particular interest to engineers working in the aerospace, defense, telecommunications, wireless, electromagnetic compatibility, and electronic packaging industries.

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

INTEGRAL EQUATION METHODS
1
ALGORITHMS FOR THE SOLUTION
143
ALTERNATIVE SURFACE INTEGRAL
233
Copyright

13 other sections not shown

Common terms and phrases

References to this book

All Book Search results »

About the author (1998)

About the Authors...
Andrew F. Peterson is associate professor at the School of Electrical and Computer Engineering at Georgia Institute of Technology. His research interests center on the development of both integral and differential equation based numerical methods for electromagnetic applications.
Scott L. Ray is a research scientist at Dow AgroSciences, where he also serves as technical leader for the Applied Statistics Group. He previously contributed to time-domain computational electromagnetics at the Lawrence Livermore National Laboratory and was involved in the development of TSAR, a general-purpose FDTD modeling system.
Raj Mittra is professor in the Electrical Engineering Department and a senior research scientist at the Applied Research Laboratory of Pennsylvania State University. He has also published over 450 journal papers and 25 books or book chapters on various topics related to electromagnetics, antennas, microwaves, and electronic packaging.

Bibliographic information