## Transport PhenomenaThe best just got better! The second edition continues to maintain its aim of presenting balanced treatment of transport phenomena and equal emphasis on mass transport, momentum transport and energy transport. It has however, been revised to include more extensive reference to applications of material covered and the addition of appendices on applied mathematics topics, the Boltzmann equation, and a summary of the basic equations in several coordinate systems. Are you looking for more than just a textbook? Transport Phenomena, 2/e offers literature citations throughout so you and your students know where to find additional material. A benefit your students will find useful once they are part of the workforce. Expand your topical coverage Transport Phenomena, 2/e has! The revision of this classic title has expanded coverage of: Transport properties in two-phase systems Boundary-layer theory Heat and mass transfer coefficients Dimensional analysis and scaling |

### What people are saying - Write a review

#### Review: Transport Phenomena

User Review - Thomas Eiden - GoodreadsTransport phenomena can be a tough topic, but the book explains things well and there are plenty of sample problems and examples. Read full review

### Contents

Contents | 2 |

Viscosity and the Mechanisms | 11 |

Questions for Discussion | 37 |

The Equations of Change | 75 |

Questions for Discussion | 104 |

Velocity Distributions with More than | 114 |

12 Unsteady Laminar Flow between Two Parallel Plates 117 Ex 4 13 Unsteady Laminar Flow near an Oscillating Plate 120 4 2O Solving Flow Proble... | 183 |

32 Flow into a Rectangular Channel 130 Ex 4 33 Flow near a Corner 131 4 4O Flow near Solid Surfaces by BoundaryLayer Theory 133 Ex 4 41 La... | 197 |

Questions for Discussion | 508 |

23 Estimation of Binary Diffusivity at High | 524 |

17 5O Theory of Diffusion in Colloidal | 531 |

17 9O The MaxwellStefan Equations for Multicomponent | 538 |

18 8O Diffusion in a ThreeComponent | 567 |

18 5 | 580 |

41 Simultaneous Heat and Mass Turbulent Flow | 657 |

Questions for Discussion 605 | 671 |

Polymeric Liquids | 231 |

Questions for Discussion | 258 |

Thermal Conductivity | 265 |

Questions for Discussion | 286 |

Measurement | 309 |

Questions for Discussion | 319 |

The Equations of Change | 333 |

Questions for Discussion | 361 |

Temperature Distributions with More | 374 |

12 2O Steady Heat Conduction in Laminar | 381 |

12 4O Boundary Layer Theory for Nonisothermal | 387 |

Questions for Discussion | 394 |

Temperature Distributions | 407 |

Interphase Transport | 422 |

14 6O Heat Transfer Coefficients for Free and Mixed | 442 |

Problems | 450 |

15 5O Use of the Macroscopic Balances to Solve | 465 |

Questions for Discussion | 474 |

Energy Transport by Radiation | 487 |

16 5O Radiation between Nonblack Bodies at Different | 502 |

20 2O SteadyState Transport in Binary Boundary Bubbles | 687 |

22 7O Effects of Interfacial Forces on Heat and Mass | 699 |

Questions for Discussion | 721 |

23 2O The Macroscopic Momentum and Angular | 738 |

62 Unsteady Operation of a Packed | 753 |

Problems | 759 |

24 3O Concentration Diffusion and Driving Forces | 774 |

24 5O Mass Transport across Selectively Permeable | 785 |

24 6O Mass Transport in Porous Media | 793 |

Problems | 799 |

Appendix A Vector and Tensor Notation | 807 |

Vector and Tensor Differential Operations | 819 |

Vector and Tensor Algebra in Curvilinear | 825 |

Integral Operations in Curvilinear | 839 |

The Kinetic Theory of Gases | 858 |

Functions for Prediction of Transport Properties | 866 |

Notation 872 | 877 |

885 | |

About the Authors | 897 |

### Common terms and phrases

2nd edition boundary conditions boundary layer Chapter Chem circular tube components constant convection coordinates creeping flow cross section cylinder density derivative diameter differential equation diffusion dimensional analysis discussed equation of continuity equation of motion equations of change Example expression film flow problems flow system Fluid Dynamics force friction factor function gases given gives gradient heat conduction heat flux heat transfer coefficient incompressible integration kinetic theory laminar flow Macroscopic Balances mass flow rate mass rate mechanical energy balance molecular molecules momentum balance momentum flux Newton’s law Newtonian fluid non-Newtonian obtained pipe plane plate Polymeric Liquids pressure quantities R. B. Bird radius rate of flow region result Reynolds number rotating shear stress Show shown in Fig solid surface solution solved sphere steady-state tank Temperature Distributions thermal conductivity time-smoothed tion turbulent flow variables vector velocity distribution velocity profile viscoelastic volume wall York zero