Advanced Numerical Models for Simulating Tsunami Waves and Runup

Front Cover
Philip L. F. Liu, Harry Hsiu-jen Yeh, Costas Synolakis
World Scientific, 2008 - Science - 322 pages
0 Reviews
This review volume is divided into two parts. The first part includes five review papers on various numerical models. Pedersen provides a brief but thorough review of the theoretical background for depth-integrated wave equations, which are employed to simulate tsunami runup. LeVeque and George describe high-resolution finite volume methods for solving the nonlinear shallow water equations. The focus of their discussion is on the applications of these methods to tsunami runup. In recent years, several advanced 3D numerical models have been introduced to the field of coastal engineering to calculate breaking waves and wave-structure interactions. These models are still under development and are at different stages of maturity. Rogers and Dalrymple discuss the Smooth Particles Hydrodynamics (SPH) method, which is a meshless method. Wu and Liu present their Large Eddy Simulation (LES) model for simulating the landslide-generated waves. Finally, Frandsen introduces the lattice Boltzmann method with the consideration of a free surface. The second part of the review volume contains the descriptions of the benchmark problems with eleven extended abstracts submitted by the workshop participants. All these papers are compared with their numerical results with benchmark solutions.

What people are saying - Write a review

We haven't found any reviews in the usual places.

About the author (2008)

Liu (Cornell University)

Bibliographic information