Ecole D'ete de Probabilites de Saint-Flour XXIX (Google eBook)

Front Cover
Erwin Bolthausen, Edwin Perkins, A. W. van der Vaart, Pierre Bernard
Springer Science & Business Media, Aug 20, 2002 - Mathematics - 466 pages
0 Reviews
This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during the period 8th-24th July, 1999. We thank the authors for all the hard work they accomplished. Their lectures are a work of reference in their domain. The School brought together 85 participants, 31 of whom gave a lecture concerning their research work. At the end of this volume you will find the list of participants and their papers. Finally, to facilitate research concerning previous schools we give here the number of the volume of "Lecture Notes" where they can be found: Lecture Notes in Mathematics 1975: n ░ 539- 1971: n ░ 307- 1973: n ░ 390- 1974: n ░ 480- 1979: n ░ 876- 1976: n ░ 598- 1977: n ░ 678- 1978: n ░ 774- 1980: n ░ 929- 1981: n ░ 976- 1982: n ░ 1097- 1983: n ░ 1117- 1988: n ░ 1427- 1984: n ░ 1180- 1985-1986 et 1987: n ░ 1362- 1989: n ░ 1464- 1990: n ░ 1527- 1991: n ░ 1541- 1992: n ░ 1581- 1993: n ░ 1608- 1994: n ░ 1648- 1995: n ░ 1690- 1996: n ░ 1665- 1997: n ░ 1717- 1998: n ░ 1738- Lecture Notes in Statistics 1971: n ░ 307- Table of Contents Part I Erwin Bolthausen: Large Deviations and Interacting Random Walks 1 On the construction of the three-dimensional polymer measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Self-attracting random walks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 One-dimensional pinning-depinning transitions. . . . . . . . . . . 105 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

1 On the construction of the threedimensional polymer measure
7
2 Selfattracting random walks
39
3 Onedimensional pinningdepinning transitions
105
References
121
DawsonWatanabe Superprocesses and Measurevalued Diffusions
125
I Introduction
132
II Branching Particle Systems and DawsonWatanabe Superprocesses
135
III Sample Path Properties of Superprocesses
193
Introduction Tangent Sets
336
Lower Bounds
346
Calculus of Scores
357
Gaussian Approximations
370
Empirical Processes and Consistency of ZEstimators
383
Empirical Processes and Normality of ZEstimators
395
Efficient Score and Onestep Estimators
412
Rates of Convergence
424

IV Interactive Drifts
247
V Spatial Interactions
281
References
318
Semiparametric Statistics
331
Maximum and Profile Likelihood
433
Infinitedimensional ZEstimators
446
References
455
Copyright

Common terms and phrases