Link Mining: Models, Algorithms, and Applications (Google eBook)

Front Cover
Philip S. Yu, Jiawei Han, Christos Faloutsos
Springer Science & Business Media, Sep 16, 2010 - Science - 586 pages
1 Review
With the recent ?ourishing research activities on Web search and mining, social networkanalysis,informationnetworkanalysis,informationretrieval,linkana- sis,andstructuraldatamining,researchonlinkmininghasbeenrapidlygrowing, forminganew?eldofdatamining. Traditionaldataminingfocuseson“?at”or“isolated”datainwhicheachdata objectisrepresentedasanindependentattributevector. However,manyreal-world data sets are inter-connected, much richer in structure, involving objects of h- erogeneoustypesandcomplexlinks. Hence,thestudyoflinkminingwillhavea highimpactonvariousimportantapplicationssuchasWebandtextmining,social networkanalysis,collaborative?ltering,andbioinformatics. Asanemergingresearch?eld,therearecurrentlynobooksfocusingonthetheory andtechniquesaswellastherelatedapplicationsforlinkmining,especiallyfrom aninterdisciplinarypointofview. Ontheotherhand,duetothehighpopularity oflinkagedata,extensiveapplicationsrangingfromgovernmentalorganizationsto commercial businesses to people’s daily life call for exploring the techniques of mininglinkagedata. Therefore,researchersandpractitionersneedacomprehensive booktosystematicallystudy,furtherdevelop,andapplythelinkminingtechniques totheseapplications. Thisbookcontainscontributedchaptersfromavarietyofprominentresearchers inthe?eld. Whilethechaptersarewrittenbydifferentresearchers,thetopicsand contentareorganizedinsuchawayastopresentthemostimportantmodels,al- rithms,andapplicationsonlinkmininginastructuredandconciseway. Giventhe lackofstructurallyorganizedinformationonthetopicoflinkmining,thebookwill provideinsightswhicharenoteasilyaccessibleotherwise. Wehopethatthebook willprovideausefulreferencetonotonlyresearchers,professors,andadvanced levelstudentsincomputersciencebutalsopractitionersinindustry. Wewouldliketoconveyourappreciationtoallauthorsfortheirvaluablec- tributions. WewouldalsoliketoacknowledgethatthisworkissupportedbyNSF throughgrantsIIS-0905215,IIS-0914934,andDBI-0960443. Chicago,Illinois PhilipS. Yu Urbana-Champaign,Illinois JiaweiHan Pittsburgh,Pennsylvania ChristosFaloutsos v Contents Part I Link-Based Clustering 1 Machine Learning Approaches to Link-Based Clustering. . . . . . . . . . . 3 Zhongfei(Mark)Zhang,BoLong,ZhenGuo,TianbingXu, andPhilipS. Yu 2 Scalable Link-Based Similarity Computation and Clustering. . . . . . . . 45 XiaoxinYin,JiaweiHan,andPhilipS. Yu 3 Community Evolution and Change Point Detection in Time-Evolving Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 JimengSun,SpirosPapadimitriou,PhilipS. Yu,andChristosFaloutsos Part II Graph Mining and Community Analysis 4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 GalileoMarkNamata,HossamSharara,andLiseGetoor 5 Markov Logic: A Language and Algorithms for Link Mining. . . . . . . 135 PedroDomingos,DanielLowd,StanleyKok,AniruddhNath,Hoifung Poon,MatthewRichardson,andParagSingla 6 Understanding Group Structures and Properties in Social Media. . . . 163 LeiTangandHuanLiu 7 Time Sensitive Ranking with Application to Publication Search. . . . . 187 XinLi,BingLiu,andPhilipS. Yu 8 Proximity Tracking on Dynamic Bipartite Graphs: Problem De?nitions and Fast Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, andChristosFaloutsos vii viii Contents 9 Discriminative Frequent Pattern-Based Graph Classi?cation. . . . . . . . 237 HongCheng,XifengYan,andJiaweiHan Part III Link Analysis for Data Cleaning and Information Integration 10 Information Integration for Graph Databases. . . . . . . . . . . . . . . . . . . . . 265 Ee-PengLim,AixinSun,AnwitamanDatta,andKuiyuChang 11 Veracity Analysis and Object Distinction. . . . . . . . . . . . . . . . . . . . . . . . . . 283 XiaoxinYin,JiaweiHan,andPhilipS. Yu Part IV Social Network Analysis 12 Dynamic Community Identi?cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  

What people are saying - Write a review

User Review - Flag as inappropriate

GOOD ONE

Contents

Part I LinkBased Clustering
2
Part II Graph Mining and Community Analysis
105
Part III Link Analysis for Data Cleaning and Information Integration
264
Part IV Social Network Analysis
306
Part V Summarization and OLAP of Information Networks
386
Part VI Analysis of Biological Information Networks
502
Index
569
Copyright

Common terms and phrases

Bibliographic information