## Turbulence in fluids: stochastic and numerical modelling |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

Introduction to turbulence in fluid mechanics | 1 |

Basic fluid dynamics | 19 |

The incompressibility assumption | 28 |

Copyright | |

16 other sections not shown

### Common terms and phrases

assume baroclinic baroclinic instability barotropic boundary layer Boussinesq approximation calculation Chapter closure coherent structures conservation consider constant correlation corresponding decay defined density diffusion dimensional direct-numerical simulations dissipation dynamics eddies eddy-diffusivity eddy-viscosity Ekman layer energy cascade enstrophy cascade equal Euler equations experimental Figure finite Fluid Mech flux Fourier space function gaussian geostrophic helicity Hence homogeneous horizontal incompressibility inertial range initial instability integral scale inviscid isotropic turbulence kinetic energy spectrum Kolmogorov Kraichnan large-eddy simulation longitudinal Mach number Metais and Lesieur mixing layer modes motion Navier-Stokes equations numerical simulations obtained passive scalar perturbation potential vorticity Prandtl number predictability problem result Reynolds number Rossby number Rossby waves rotation shear shown shows small scales spanwise spatial spectral space spectral tensor statistical stratification stressed subgrid-scale temperature term theory three-dimensional turbulence tion transfer two-dimensional turbulence vector velocity field VIII viscosity vortex filaments vorticity equation wave number wave vector yields zero