Combinatorial Optimization: Polyhedra and Efficiency, Volume 1 (Google eBook)

Front Cover
Springer Science & Business Media, Feb 12, 2003 - Business & Economics - 1881 pages
1 Review
This book offers an in-depth overview of polyhedral methods and efficient algorithms in combinatorial optimization.These methods form a broad, coherent and powerful kernel in combinatorial optimization, with strong links to discrete mathematics, mathematical programming and computer science. In eight parts, various areas are treated, each starting with an elementary introduction to the area, with short, elegant proofs of the principal results, and each evolving to the more advanced methods and results, with full proofs of some of the deepest theorems in the area. Over 4000 references to further research are given, and historical surveys on the basic subjects are presented.
  

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

I
1
II
2
III
4
IV
5
V
6
VI
8
VII
9
IX
11
CDLVIII
737
CDLIX
738
CDLX
741
CDLXI
743
CDLXIII
745
CDLXV
746
CDLXVI
747
CDLXVIII
751

XII
14
XIV
16
XVI
28
XVII
36
XVIII
37
XIX
38
XX
39
XXII
40
XXIV
42
XXVI
43
XXVII
44
XXIX
46
XXX
47
XXXI
48
XXXII
49
XXXIII
59
XXXIV
60
XXXVI
61
XXXVIII
63
XXXIX
65
XLI
67
XLIII
68
XLIV
71
XLV
72
XLVI
73
XLVII
74
XLVIII
75
XLIX
76
L
81
LI
82
LII
83
LIV
84
LV
85
LVI
87
LVIII
88
LIX
89
LX
91
LXII
93
LXIV
94
LXVI
96
LXVII
97
LXVIII
98
LXIX
99
LXX
101
LXXI
103
LXXII
105
LXXIII
107
LXXVI
109
LXXVII
110
LXXVIII
111
LXXIX
112
LXXX
114
LXXXI
115
LXXXII
116
LXXXIII
117
LXXXIV
118
LXXXV
119
LXXXVI
131
LXXXVII
133
LXXXVIII
134
LXXXIX
135
XC
136
XCI
137
XCII
138
XCIII
140
XCV
141
XCVI
142
XCVII
148
XCIX
150
C
151
CII
152
CIII
153
CIV
154
CV
155
CVI
156
CVII
159
CVIII
160
CIX
162
CXI
164
CXII
170
CXIV
171
CXV
172
CXVI
173
CXVII
174
CXVIII
175
CXIX
176
CXX
177
CXXI
178
CXXII
179
CXXIII
182
CXXIV
183
CXXV
186
CXXVI
190
CXXVII
191
CXXVIII
192
CXXIX
195
CXXX
198
CXXXI
202
CXXXII
203
CXXXIII
204
CXXXIV
205
CXXXV
207
CXXXVII
210
CXXXVIII
213
CXXXIX
214
CXL
217
CXLI
218
CXLII
219
CXLIII
220
CXLIV
221
CXLV
222
CXLVI
224
CXLVII
226
CXLVIII
227
CXLIX
229
CL
230
CLI
232
CLII
233
CLIII
235
CLIV
236
CLV
237
CLVI
239
CLVII
241
CLVIII
242
CLIX
243
CLX
246
CLXI
247
CLXII
248
CLXIII
251
CLXIV
252
CLXV
253
CLXVI
257
CLXVII
259
CLXVIII
260
CLXIX
262
CLXXI
263
CLXXIII
264
CLXXIV
265
CLXXVI
267
CLXXVII
275
CLXXVIII
276
CLXXX
277
CLXXXII
278
CLXXXIII
285
CLXXXIV
286
CLXXXV
288
CLXXXVI
289
CLXXXVII
290
CLXXXVIII
292
CLXXXIX
301
CXC
303
CXCI
304
CXCII
305
CXCIV
307
CXCV
308
CXCVI
309
CXCVII
310
CXCVIII
311
CXCIX
314
CC
315
CCI
317
CCIII
318
CCV
319
CCVI
321
CCVII
322
CCIX
323
CCX
324
CCXI
325
CCXII
326
CCXIII
327
CCXIV
328
CCXV
329
CCXVI
330
CCXVII
331
CCXVIII
333
CCXIX
334
CCXX
335
CCXXI
336
CCXXII
337
CCXXIII
338
CCXXIV
339
CCXXV
341
CCXXVI
342
CCXXVII
343
CCXXVIII
345
CCXXIX
346
CCXXX
347
CCXXXI
348
CCXXXII
349
CCXXXIII
350
CCXXXIV
351
CCXXXV
353
CCXXXVI
355
CCXXXVII
359
CCXXXIX
361
CCXL
362
CCXLI
378
CCXLIII
379
CCXLIV
380
CCXLV
382
CCXLVII
383
CCXLVIII
385
CCXLIX
387
CCL
389
CCLII
390
CCLIII
393
CCLV
395
CCLVI
397
CCLVII
399
CCLVIII
401
CCLIX
402
CCLX
407
CCLXI
408
CCLXII
409
CCLXIII
411
CCLXIV
413
CCLXV
415
CCLXVIII
418
CCLXIX
421
CCLXX
422
CCLXXI
423
CCLXXII
425
CCLXXIV
426
CCLXXV
427
CCLXXVI
428
CCLXXVII
429
CCLXXVIII
430
CCLXXIX
431
CCLXXX
438
CCLXXXII
439
CCLXXXIII
440
CCLXXXIV
442
CCLXXXV
443
CCLXXXVI
444
CCLXXXVII
446
CCLXXXVIII
448
CCLXXXIX
450
CCXC
452
CCXCI
453
CCXCII
454
CCXCIII
456
CCXCIV
458
CCXCV
459
CCXCVII
461
CCXCIX
462
CCC
464
CCCI
465
CCCII
467
CCCIII
468
CCCIV
470
CCCV
474
CCCVI
475
CCCVII
477
CCCVIII
478
CCCIX
480
CCCX
482
CCCXI
485
CCCXII
487
CCCXIV
488
CCCXV
490
CCCXVI
491
CCCXVII
493
CCCXVIII
494
CCCXIX
498
CCCXX
499
CCCXXI
500
CCCXXII
501
CCCXXIII
507
CCCXXIV
510
CCCXXV
515
CCCXXVI
517
CCCXXVII
519
CCCXXVIII
520
CCCXXIX
521
CCCXXX
522
CCCXXXII
523
CCCXXXIII
524
CCCXXXIV
526
CCCXXXV
528
CCCXXXVI
531
CCCXXXVIII
532
CCCXXXIX
533
CCCXLI
534
CCCXLII
535
CCCXLIII
536
CCCXLIV
539
CCCXLV
544
CCCXLVII
545
CCCXLVIII
546
CCCL
547
CCCLI
550
CCCLII
554
CCCLIII
556
CCCLIV
558
CCCLV
559
CCCLVI
560
CCCLVII
561
CCCLVIII
562
CCCLIX
564
CCCLX
566
CCCLXI
567
CCCLXIII
569
CCCLXIV
570
CCCLXVI
571
CCCLXVII
572
CCCLXVIII
573
CCCLXIX
574
CCCLXX
575
CCCLXXI
576
CCCLXXIII
577
CCCLXXIV
578
CCCLXXVI
579
CCCLXXVII
581
CCCLXXVIII
582
CCCLXXIX
583
CCCLXXX
584
CCCLXXXII
586
CCCLXXXIII
589
CCCLXXXIV
591
CCCLXXXV
593
CCCLXXXVI
594
CCCLXXXVIII
597
CCCLXXXIX
598
CCCXC
600
CCCXCI
604
CCCXCII
605
CCCXCIV
607
CCCXCV
608
CCCXCVI
609
CCCXCVII
611
CCCXCVIII
612
CCCXCIX
613
CD
614
CDII
617
CDIII
619
CDIV
620
CDV
621
CDVI
622
CDVII
624
CDVIII
630
CDIX
643
CDX
644
CDXI
646
CDXII
647
CDXIII
649
CDXIV
651
CDXVI
652
CDXVII
653
CDXVIII
654
CDXIX
659
CDXX
662
CDXXII
663
CDXXIII
664
CDXXIV
666
CDXXVI
667
CDXXVII
668
CDXXVIII
669
CDXXIX
671
CDXXXI
672
CDXXXII
688
CDXXXIII
690
CDXXXIV
693
CDXXXV
698
CDXXXVI
699
CDXXXVII
700
CDXXXVIII
702
CDXXXIX
704
CDXL
705
CDXLI
707
CDXLII
710
CDXLIII
712
CDXLIV
717
CDXLV
719
CDXLVI
720
CDXLVII
721
CDXLVIII
722
CDXLIX
723
CDL
725
CDLI
727
CDLII
729
CDLIII
730
CDLIV
731
CDLV
732
CDLVI
734
CDLVII
736
CDLXIX
753
CDLXX
756
CDLXXI
757
CDLXXII
762
CDLXXIII
763
CDLXXIV
764
CDLXXV
766
CDLXXVI
768
CDLXXVII
771
CDLXXVIII
773
CDLXXX
774
CDLXXXI
775
CDLXXXII
776
CDLXXXIV
779
CDLXXXV
781
CDLXXXVI
782
CDLXXXVIII
783
CDLXXXIX
784
CDXC
786
CDXCI
787
CDXCIII
789
CDXCIV
790
CDXCV
792
CDXCVI
793
CDXCVII
795
CDXCIX
796
D
797
DI
798
DII
799
DIII
800
DIV
801
DV
804
DVI
805
DVII
807
DVIII
809
DIX
811
DX
818
DXII
819
DXIII
820
DXIV
821
DXV
823
DXVI
825
DXVII
826
DXVIII
828
DXIX
829
DXX
832
DXXI
833
DXXII
834
DXXIII
835
DXXIV
837
DXXV
838
DXXVI
840
DXXVII
841
DXXVIII
842
DXXIX
845
DXXX
849
DXXXI
851
DXXXII
853
DXXXIII
855
DXXXIV
857
DXXXV
858
DXXXVI
859
DXXXVIII
860
DXXXIX
862
DXL
864
DXLI
865
DXLII
866
DXLIII
867
DXLIV
868
DXLV
869
DXLVI
870
DXLVII
871
DXLVIII
877
DXLIX
878
DL
879
DLI
889
DLII
892
DLIII
893
DLIV
895
DLVI
896
DLVII
897
DLVIII
899
DLIX
900
DLX
901
DLXII
902
DLXIII
903
DLXIV
904
DLXV
905
DLXVI
907
DLXVII
908
DLXIX
909
DLXX
911
DLXXI
913
DLXXII
918
DLXXIII
921
DLXXIV
923
DLXXV
925
DLXXVI
926
DLXXVII
928
DLXXVIII
930
DLXXIX
931
DLXXX
934
DLXXXII
935
DLXXXIII
937
DLXXXIV
940
DLXXXV
943
DLXXXVII
944
DLXXXIX
946
DXC
947
DXCI
949
DXCII
951
DXCIII
953
DXCIV
954
DXCV
956
DXCVI
958
DXCVII
959
DXCVIII
960
DXCIX
962
DC
964
DCI
967
DCII
968
DCIII
969
DCV
970
DCVI
973
DCVIII
975
DCIX
976
DCX
981
DCXI
982
DCXIII
983
DCXIV
984
DCXV
985
DCXVI
986
DCXVII
987
DCXVIII
989
DCXIX
990
DCXX
992
DCXXI
993
DCXXIII
994
DCXXIV
995
DCXXV
996
DCXXVI
1005
DCXXVIII
1006
DCXXIX
1007
DCXXX
1008
DCXXXI
1011
DCXXXII
1015
DCXXXIII
1017
DCXXXIV
1018
DCXXXV
1020
DCXXXVII
1021
DCXXXVIII
1023
DCXXXIX
1025
DCXL
1028
DCXLI
1029
DCXLII
1030
DCXLIII
1034
DCXLIV
1035
DCXLVI
1037
DCXLVII
1038
DCXLVIII
1040
DCXLIX
1044
DCL
1045
DCLII
1046
DCLIII
1047
DCLIV
1049
DCLV
1051
DCLVI
1052
DCLVII
1055
DCLVIII
1058
DCLX
1061
DCLXI
1062
DCLXII
1063
DCLXIII
1066
DCLXIV
1067
DCLXV
1074
DCLXVI
1077
DCLXVII
1078
DCLXVIII
1081
DCLXIX
1083
DCLXX
1084
DCLXXI
1085
DCLXXII
1086
DCLXXIV
1088
DCLXXVI
1090
DCLXXVII
1091
DCLXXVIII
1093
DCLXXIX
1095
DCLXXXI
1096
DCLXXXII
1098
DCLXXXIV
1099
DCLXXXV
1101
DCLXXXVI
1102
DCLXXXVII
1103
DCLXXXVIII
1104
DCLXXXIX
1106
DCXCI
1108
DCXCII
1109
DCXCIII
1110
DCXCIV
1111
DCXCV
1112
DCXCVII
1113
DCXCVIII
1115
DCXCIX
1116
DCC
1118
DCCII
1120
DCCIII
1122
DCCIV
1123
DCCV
1125
DCCVI
1126
DCCVII
1130
DCCVIII
1131
DCCIX
1133
DCCX
1135
DCCXII
1137
DCCXIII
1138
DCCXIV
1142
DCCXV
1143
DCCXVI
1145
DCCXVII
1146
DCCXVIII
1147
DCCXIX
1148
DCCXX
1149
DCCXXI
1152
DCCXXII
1155
DCCXXIII
1159
DCCXXV
1167
DCCXXVI
1172
DCCXXVII
1173
DCCXXIX
1175
DCCXXX
1176
DCCXXXI
1186
DCCXXXIII
1187
DCCXXXIV
1188
DCCXXXV
1194
DCCXXXVI
1196
DCCXXXVII
1200
DCCXXXVIII
1201
DCCXXXIX
1203
DCCXL
1204
DCCXLI
1206
DCCXLII
1207
DCCXLIV
1208
DCCXLV
1213
DCCXLVI
1216
DCCXLVII
1217
DCCXLVIII
1219
DCCXLIX
1221
DCCLI
1222
DCCLII
1223
DCCLIV
1224
DCCLV
1225
DCCLVI
1227
DCCLVII
1228
DCCLVIII
1230
DCCLIX
1233
DCCLX
1234
DCCLXI
1236
DCCLXII
1238
DCCLXIII
1241
DCCLXIV
1242
DCCLXV
1243
DCCLXVI
1244
DCCLXVII
1245
DCCLXVIII
1247
DCCLXIX
1248
DCCLXX
1249
DCCLXXI
1251
DCCLXXIII
1254
DCCLXXIV
1255
DCCLXXV
1257
DCCLXXVI
1261
DCCLXXVII
1262
DCCLXXVIII
1263
DCCLXXIX
1265
DCCLXXX
1266
DCCLXXXII
1271
DCCLXXXIII
1273
DCCLXXXIV
1275
DCCLXXXV
1276
DCCLXXXVI
1279
DCCLXXXVIII
1283
DCCLXXXIX
1285
DCCXC
1286
DCCXCI
1287
DCCXCII
1288
DCCXCIII
1289
DCCXCIV
1290
DCCXCV
1291
DCCXCVI
1292
DCCXCVII
1294
DCCXCVIII
1295
DCCXCIX
1296
DCCCI
1299
DCCCIII
1302
DCCCIV
1304
DCCCV
1305
DCCCVI
1307
DCCCVIII
1308
DCCCIX
1309
DCCCX
1311
DCCCXI
1313
DCCCXII
1314
DCCCXIII
1316
DCCCXIV
1318
DCCCXV
1320
DCCCXVII
1323
DCCCXVIII
1325
DCCCXIX
1326
DCCCXX
1328
DCCCXXII
1329
DCCCXXIII
1330
DCCCXXIV
1331
DCCCXXV
1334
DCCCXXVI
1341
DCCCXXVII
1342
DCCCXXVIII
1345
DCCCXXIX
1348
DCCCXXX
1350
DCCCXXXI
1352
DCCCXXXII
1353
DCCCXXXIII
1354
DCCCXXXIV
1356
DCCCXXXV
1357
DCCCXXXVI
1361
DCCCXXXVII
1367
DCCCXXXVIII
1368
DCCCXXXIX
1371
DCCCXL
1373
DCCCXLI
1375
DCCCXLII
1376
DCCCXLV
1377
DCCCXLVII
1378
DCCCXLIX
1379
DCCCL
1380
DCCCLI
1381
DCCCLII
1383
DCCCLIV
1384
DCCCLV
1386
DCCCLVI
1387
DCCCLVII
1392
DCCCLVIII
1394
DCCCLIX
1395
DCCCLX
1397
DCCCLXII
1399
DCCCLXIII
1400
DCCCLXIV
1401
DCCCLXV
1402
DCCCLXVII
1403
DCCCLXVIII
1404
DCCCLXIX
1406
DCCCLXXII
1407
DCCCLXXIII
1408
DCCCLXXV
1409
DCCCLXXVI
1413
DCCCLXXVII
1415
DCCCLXXIX
1416
DCCCLXXX
1417
DCCCLXXXI
1418
DCCCLXXXII
1419
DCCCLXXXIV
1420
DCCCLXXXV
1421
DCCCLXXXVII
1422
DCCCLXXXVIII
1423
DCCCLXXXIX
1424
DCCCXC
1425
DCCCXCII
1426
DCCCXCIII
1428
DCCCXCIV
1429
DCCCXCVI
1430
DCCCXCVII
1431
DCCCXCIX
1434
CM
1437
CMI
1439
CMII
1440
CMIII
1444
CMIV
1447
CMVI
1448
CMVII
1450
CMVIII
1453
CMIX
1463
CMX
1767
CMXI
1807
CMXII
1880
Copyright

Common terms and phrases

References to this book

All Book Search results »

About the author (2003)

Alexander Schrijver is one of the most respected researchers in this area. He has won the Dantzig award, the Fulkerson prize (twice) and the Lanchester Prize for his earlier classic text on "Theory of Linear and Integer Programming".

Bibliographic information