The Strength of Nonstandard Analysis (Google eBook)

Front Cover
Springer Science & Business Media, Dec 3, 2007 - Mathematics - 421 pages
0 Reviews
Nonstandard Analysis enhances mathematical reasoning by introducing new ways of expression and deduction. Distinguishing between standard and nonstandard mathematical objects, its inventor, the eminent mathematician Abraham Robinson, settled in 1961 the centuries-old problem of how to use infinitesimals correctly in analysis. Having also worked as an engineer, he saw not only that his method greatly simplified mathematically proving and teaching, but also served as a powerful tool in modelling, analyzing and solving problems in the applied sciences, among others by effective rescaling and by infinitesimal discretizations. This book reflects the progress made in the forty years since the appearance of Robinson’s revolutionary book Nonstandard Analysis: in the foundations of mathematics and logic, number theory, statistics and probability, in ordinary, partial and stochastic differential equations and in education. The contributions are clear and essentially self-contained.
  

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

II
3
IV
4
V
6
VI
7
VII
9
VIII
11
IX
14
X
16
CXIV
225
CXV
227
CXVII
228
CXVIII
230
CXIX
232
CXX
233
CXXI
234
CXXII
236

XI
17
XII
20
XIII
21
XIV
23
XV
25
XVI
27
XVIII
30
XIX
33
XXI
34
XXII
37
XXIII
41
XXIV
44
XXV
47
XXVII
48
XXVIII
53
XXIX
58
XXX
64
XXXII
65
XXXIV
67
XXXV
76
XL
77
XLII
78
XLIII
80
XLIV
81
XLV
83
XLVI
84
XLVII
86
XLVIII
88
L
90
LI
92
LIII
94
LIV
95
LVI
96
LVII
97
LVIII
103
LIX
111
LX
117
LXI
119
LXIII
120
LXIV
121
LXV
124
LXVI
125
LXVII
129
LXVIII
133
LXXI
134
LXXII
140
LXXIII
143
LXXIV
144
LXXVI
146
LXXVII
147
LXXVIII
148
LXXIX
149
LXXX
150
LXXXI
151
LXXXII
156
LXXXIII
159
LXXXIV
162
LXXXV
163
LXXXVI
164
LXXXVII
165
LXXXIX
167
XC
170
XCI
172
XCII
174
XCIII
176
XCIV
177
XCV
178
XCVI
180
XCVII
181
XCVIII
189
XCIX
191
C
192
CI
194
CII
196
CIII
197
CIV
198
CV
202
CVI
206
CVIII
207
CIX
210
CX
217
CXII
221
CXIII
222
CXXIII
238
CXXV
240
CXXVI
243
CXXVII
250
CXXVIII
251
CXXIX
257
CXXX
261
CXXXI
263
CXXXII
264
CXXXIII
266
CXXXIV
271
CXXXVI
273
CXXXVII
274
CXXXVIII
280
CXXXIX
281
CXL
282
CXLI
286
CXLIII
287
CXLIV
288
CXLV
290
CXLVI
291
CXLVII
292
CXLVIII
294
CL
295
CLI
297
CLII
298
CLIII
299
CLIV
300
CLV
301
CLVI
306
CLVII
309
CLVIII
310
CLIX
317
CLXI
319
CLXII
323
CLXIII
325
CLXV
326
CLXVI
327
CLXVII
328
CLXVIII
329
CLXIX
331
CLXXI
332
CLXXIII
334
CLXXV
336
CLXXVI
337
CLXXVII
338
CLXXIX
339
CLXXX
340
CLXXXI
342
CLXXXII
343
CLXXXIII
344
CLXXXIV
345
CLXXXV
349
CLXXXVII
351
CLXXXVIII
353
CLXXXIX
356
CXC
361
CXCI
367
CXCII
369
CXCVII
370
CXCVIII
372
CXCIX
373
CC
375
CCI
376
CCII
379
CCIV
380
CCV
381
CCVI
382
CCIX
383
CCX
385
CCXII
386
CCXIV
387
CCXV
388
CCXVI
389
CCXVII
390
CCXVIII
391
CCXIX
392
CCXX
395
CCXXIII
396
CCXXIV
397
CCXXV
399
CCXXVI
400

Common terms and phrases

Bibliographic information