Sphere Packings, Lattices and Groups

Front Cover
Springer Science & Business Media, Feb 1, 1999 - Computers - 703 pages
0 Reviews
We now apply the algorithm above to find the 121 orbits of norm -2 vectors from the (known) nann 0 vectors, and then apply it again to find the 665 orbits of nann -4 vectors from the vectors of nann 0 and -2. The neighbors of a strictly 24 dimensional odd unimodular lattice can be found as follows. If a norm -4 vector v E II . corresponds to the sum 25 1 of a strictly 24 dimensional odd unimodular lattice A and a !-dimensional lattice, then there are exactly two nonn-0 vectors of ll25,1 having inner product -2 with v, and these nann 0 vectors correspond to the two even neighbors of A. The enumeration of the odd 24-dimensional lattices. Figure 17.1 shows the neighborhood graph for the Niemeier lattices, which has a node for each Niemeier lattice. If A and B are neighboring Niemeier lattices, there are three integral lattices containing A n B, namely A, B, and an odd unimodular lattice C (cf. [Kne4]). An edge is drawn between nodes A and B in Fig. 17.1 for each strictly 24-dimensional unimodular lattice arising in this way. Thus there is a one-to-one correspondence between the strictly 24-dimensional odd unimodular lattices and the edges of our neighborhood graph. The 156 lattices are shown in Table 17 .I. Figure I 7. I also shows the corresponding graphs for dimensions 8 and 16.
  

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

IV
1
V
3
VI
7
VII
8
VIII
12
IX
21
X
24
XI
26
CLII
286
CLIII
287
CLIV
290
CLV
292
CLVI
293
CLVII
294
CLIX
295
CLX
296

XIII
27
XIV
29
XV
31
XVI
33
XVII
36
XVIII
40
XIX
41
XX
42
XXI
44
XXII
47
XXIII
50
XXIV
52
XXV
56
XXVI
59
XXVIII
63
XXIX
66
XXX
69
XXXI
71
XXXII
75
XXXIII
77
XXXIV
79
XXXVI
81
XXXVII
82
XXXVIII
83
XXXIX
84
XL
85
XLI
86
XLII
87
XLIII
88
XLIV
89
XLV
90
XLVI
92
XLVII
94
XLVIII
95
XLIX
99
L
101
LI
102
LII
106
LIII
108
LIV
110
LV
112
LVI
113
LVIII
115
LIX
116
LX
117
LXI
118
LXII
119
LXIII
120
LXV
124
LXVI
125
LXVII
127
LXVIII
129
LXIX
131
LXX
136
LXXI
137
LXXIII
138
LXXVI
139
LXXVII
140
LXXVIII
141
LXXIX
142
LXXXII
144
LXXXIV
145
LXXXVI
146
LXXXVII
147
LXXXVIII
148
LXXXIX
149
XC
150
XCI
151
XCIII
152
XCIV
153
XCV
155
XCVI
157
XCVII
163
XCVIII
168
XCIX
170
C
174
CI
176
CII
177
CIII
179
CIV
181
CV
182
CVI
185
CVII
189
CVIII
191
CX
193
CXI
197
CXII
202
CXIII
205
CXIV
206
CXV
207
CXVI
210
CXVII
211
CXVIII
215
CXIX
221
CXX
222
CXXI
224
CXXII
227
CXXIV
229
CXXV
232
CXXVI
233
CXXVII
235
CXXVIII
236
CXXIX
238
CXXX
245
CXXXI
249
CXXXII
250
CXXXIII
252
CXXXIV
253
CXXXV
256
CXXXVI
257
CXXXVII
258
CXXXVIII
260
CXXXIX
263
CXL
265
CXLI
267
CXLII
269
CXLIII
271
CXLIV
273
CXLVI
274
CXLVII
276
CXLVIII
278
CL
279
CLI
283
CLXI
299
CLXII
300
CLXIII
302
CLXV
303
CLXVI
305
CLXVII
307
CLXVIII
308
CLXIX
309
CLXX
311
CLXXI
314
CLXXII
316
CLXXIII
318
CLXXIV
319
CLXXVI
320
CLXXVII
323
CLXXVIII
327
CLXXIX
331
CLXXX
337
CLXXXI
338
CLXXXII
340
CLXXXIII
342
CLXXXIV
344
CLXXXV
345
CLXXXVI
349
CLXXXVII
352
CLXXXVIII
354
CLXXXIX
355
CXC
356
CXCII
357
CXCIII
359
CXCIV
364
CXCV
366
CXCVII
367
CXCIX
368
CC
369
CCI
370
CCIII
372
CCIV
373
CCVII
375
CCVIII
377
CCIX
378
CCXI
379
CCXII
380
CCXIV
381
CCXV
382
CCXVII
384
CCXVIII
385
CCXIX
386
CCXX
388
CCXXI
389
CCXXII
390
CCXXIV
391
CCXXV
392
CCXXVI
393
CCXXVII
396
CCXXVIII
399
CCXXX
402
CCXXXI
406
CCXXXII
408
CCXXXIII
410
CCXXXIV
413
CCXXXV
421
CCXXXVI
429
CCXXXVII
430
CCXXXVIII
433
CCXXXIX
436
CCXL
439
CCXLI
441
CCXLII
443
CCXLIII
445
CCXLIV
446
CCXLV
448
CCXLVI
449
CCXLVII
450
CCXLIX
451
CCL
453
CCLII
454
CCLV
455
CCLVII
456
CCLIX
457
CCLXII
458
CCLXIII
461
CCLXIV
464
CCLXVI
465
CCLXVII
474
CCLXVIII
476
CCLXIX
478
CCLXX
480
CCLXXI
482
CCLXXII
486
CCLXXIII
497
CCLXXIV
504
CCLXXV
508
CCLXXVI
512
CCLXXVII
515
CCLXXVIII
516
CCLXXIX
521
CCLXXX
524
CCLXXXI
525
CCLXXXII
529
CCLXXXIII
530
CCLXXXIV
534
CCLXXXV
543
CCLXXXVI
549
CCLXXXVIII
552
CCLXXXIX
556
CCXC
558
CCXCIII
559
CCXCVI
560
CCXCVII
561
CCXCIX
562
CCC
563
CCCII
564
CCCIII
565
CCCV
566
CCCVI
568
CCCVII
569
CCCVIII
570
CCCIX
574
CCCX
642
CCCXI
681
Copyright

Common terms and phrases

Popular passages

Page 656 - Multidimensional constellations Part I: Introduction, Figures of merit, and Generalized Cross Constellations,
Page 656 - Coset codes for partial response channels; or, coset codes with spectral nulls, IEEE Trans.

References to this book

All Book Search results »