Linear Estimation

Front Cover
Prentice Hall, 2000 - Mathematics - 854 pages
0 Reviews

This original work offers the most comprehensive and up-to-date treatment of the important subject of optimal linear estimation, which is encountered in many areas of engineering such as communications, control, and signal processing, and also in several other fields, e.g., econometrics and statistics. The book not only highlights the most significant contributions to this field during the 20th century, including the works of Wiener and Kalman, but it does so in an original and novel manner that paves the way for further developments. This book contains a large collection of problems that complement it and are an important part of piece, in addition to numerous sections that offer interesting historical accounts and insights. The book also includes several results that appear in print for the first time.

FEATURES/BENEFITS

  • Takes a geometric point of view.
  • Emphasis on the numerically favored array forms of many algorithms.
  • Emphasis on equivalence and duality concepts for the solution of several related problems in adaptive filtering, estimation, and control.
    • These features are generally absent in most prior treatments, ostensibly on the grounds that they are too abstract and complicated. It is the authors' hope that these misconceptions will be dispelled by the presentation herein, and that the fundamental simplicity and power of these ideas will be more widely recognized and exploited. Among other things, these features already yielded new insights and new results for linear and nonlinear problems in areas such as adaptive filtering, quadratic control, and estimation, including the recent "Ha theories."

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

3
14
DETERMINISTIC LEASTSQUARES PROBLEMS
40
A On Systems of Linear Equations
74
Copyright

39 other sections not shown

Common terms and phrases

About the author (2000)

Ali H. Sayed is Professor of Electrical Engineering at UCLA, where he established and directs the Adaptive Systems Laboratory. He is a Fellow of the IEEE for his contributions to adaptive filtering and estimation algorithms. His research has attracted several recognitions including the 2003 Kuwait Prize, 2005 Terman Award, and several IEEE Best Paper Awards.

Bibliographic information