## A Treatise on Plane and Spherical Trigonometry: And Its Applications to Astronomy and Geodesy with Numerous Examples |

### Contents

1 | |

3 | |

8 | |

16 | |

23 | |

25 | |

26 | |

27 | |

211 | |

217 | |

218 | |

219 | |

220 | |

221 | |

222 | |

224 | |

28 | |

29 | |

30 | |

31 | |

33 | |

34 | |

35 | |

36 | |

37 | |

38 | |

39 | |

40 | |

41 | |

43 | |

44 | |

50 | |

52 | |

54 | |

55 | |

56 | |

57 | |

58 | |

60 | |

61 | |

63 | |

69 | |

75 | |

87 | |

93 | |

108 | |

115 | |

138 | |

146 | |

152 | |

165 | |

167 | |

176 | |

182 | |

188 | |

201 | |

204 | |

207 | |

226 | |

229 | |

233 | |

234 | |

235 | |

236 | |

238 | |

239 | |

240 | |

241 | |

242 | |

248 | |

252 | |

254 | |

255 | |

256 | |

257 | |

267 | |

268 | |

270 | |

272 | |

273 | |

274 | |

276 | |

277 | |

278 | |

279 | |

280 | |

281 | |

284 | |

286 | |

287 | |

288 | |

297 | |

324 | |

331 | |

338 | |

346 | |

352 | |

353 | |

359 | |

### Other editions - View all

A Treatise on Plane and Spherical Trigonometry: And Its Applications to ... Edward Albert Bowser No preview available - 2013 |

### Common terms and phrases

algebraically angle AOP angle of elevation base calculate centre circle circular measure common logarithms cos b cos cos² cosec cotangent decimal places denote diff equal equations EXAMPLES expression feet find log find the angle find the height find the number formulæ Given log Hence horizon hypotenuse integer log cot log sin log sine mantissa Multiply negative number whose logarithm observed obtained opposite perpendicular plane polar triangle positive Prove the following quadrant R₁ r₂ radian radius right angles right triangle sec² secant sides Similarly sin a cos sin B sin sin x sin² sin³ sines and cosines sinx siny solution Solve spherical triangle subtends table of logarithms table of natural tan² tangent triangle ABC trigonometric functions vertical yards ОР

### Popular passages

Page 148 - In any triangle the square of any side is equal to the sum of the squares of the other two sides minus twice the product of these two sides and the cosine of their included angle.

Page 147 - Law of Sines. — In any triangle the sides are proportional to the sines of the opposite angles.

Page 278 - AB'C, we have by (4) cos a' — cos b cos c' + sin b sin c' cos B'AC, or cos(тг— a) = cos b cos(тг— c) + sin b sin(тт — C)COS(тг —A). .-. cos a = cos b cos с + sin b sin с cos A.

Page 278 - ... cos a = cos b cos с + sin b sin с cos A ; (2) cos b = cos a cos с + sin a sin с cos в ; ^ A. (3) cos с = cos a cos b + sin a sin b cos C.

Page 278 - A cos 6 = cos a cos c + sin a sin c cos B cos c = cos a cos 6 + sin a sin 6 cos C Law of Cosines for Angles cos A = — cos B...

Page 6 - Radian is the angle subtended, at the centre of a circle, by an arc equal in length to the radius...

Page 17 - If the cosine of A be subtracted from unity, the remainder is called the versed sine of A. If the sine of A be...

Page 89 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.

Page 149 - In every plane triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides is to the tangent of half their difference.