## Additive Number Theory: Inverse Problems and the Geometry of SumsetsMany classical problems in additive number theory are direct problems, in which one starts with a set |

### What people are saying - Write a review

### Contents

III | 1 |

IV | 7 |

V | 13 |

VI | 18 |

VII | 21 |

VIII | 29 |

IX | 31 |

X | 33 |

XL | 142 |

XLI | 152 |

XLII | 163 |

XLIV | 167 |

XLV | 174 |

XLVI | 177 |

XLVII | 180 |

XLVIII | 185 |

XI | 35 |

XII | 41 |

XIII | 42 |

XIV | 43 |

XV | 48 |

XVI | 52 |

XVII | 57 |

XVIII | 62 |

XIX | 67 |

XX | 73 |

XXI | 74 |

XXII | 77 |

XXIII | 78 |

XXIV | 81 |

XXV | 89 |

XXVI | 92 |

XXVII | 95 |

XXVIII | 98 |

XXIX | 101 |

XXX | 106 |

XXXI | 107 |

XXXII | 109 |

XXXIII | 110 |

XXXIV | 117 |

XXXV | 127 |

XXXVI | 130 |

XXXVII | 131 |

XXXVIII | 133 |

XXXIX | 135 |

### Other editions - View all

Additive Number Theory: Inverse Problems and the Geometry of Sumsets Melvyn B. Nathanson No preview available - 1996 |