Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum GroupsThe already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc. |
What people are saying - Write a review
We haven't found any reviews in the usual places.
Contents
II | xi |
III | 11 |
IV | 18 |
V | 26 |
VI | 41 |
VII | 46 |
VIII | 61 |
IX | 66 |
XXXI | 167 |
XXXIV | 169 |
XXXV | 173 |
XXXVI | 175 |
XXXVII | 183 |
XXXVIII | 186 |
XXXIX | 190 |
XL | 192 |
Other editions - View all
Algorithmic Methods in Non-Commutative Algebra J. L. Bueso,Jose Gomez-Torrecillas,A. Verschoren No preview available - 2014 |
Common terms and phrases
admissible order assume automorphism basis G Buchberger's Algorithm canonical co-homogeneous completely prime ideal consider COROLLARY defined DEFINITION deg(f deg(g dega deglex denote Diamond Lemma Division Algorithm division ring domain enveloping algebra euclidean domain EXAMPLE exists exp(f exp(g exp(h Exp(I exp(r filtration finite follows Gelfand-Kirillov dimension graded Gröbner basis hence Hilbert function homomorphism Homr implies induction irreducible isomorphism iterated Ore extension k-algebra k-vectorspace left Gröbner basis left ideal left noetherian left PBW ring left R-module LEMMA Let f Let G lexicographical order Lie algebra matrix minimal module monoid monomials non-commutative non-zero elements notations obtain PBW algebra polynomial positive integer previous result prime ideal PROOF PROPOSITION prove quantum groups quantum plane quasi-derivation quotient R-points reduced Gröbner reduction-unique resp stredo submodule syzygy Theorem two-sided ideal unique vectors verify Weyl algebra yields
Popular passages
Page 297 - SPC. 1999 ISBN 0-7923-5570-9 6. J. Caldwell and YM Ram: Mathematical Modelling. Concepts and Case Studies. 1999 ISBN 0-7923-5820-1 7. 1 . R. Haber and L. Keviczky : Nonlinear System Identification - Input-Output Modeling Approach. Volume 1: Nonlinear System Parameter Identification. 1999 ISBN 0-7923-5856-2; ISBN 0-7923-5858-9 Set 2. R. Haber and L. Keviczky: Nonlinear System Identification - Input-Output Modeling Approach. Volume 2: Nonlinear...
Page 297 - ... Parameter Identification. 1999 ISBN 0-7923-5856-2; ISBN 0-7923-5858-9 Set 2. R. Haber and L. Keviczky: Nonlinear System Identification - Input-Output Modeling Approach. Volume 2: Nonlinear System Structure Identification. 1999 ISBN 0-7923-5857-0; ISBN 0-7923-5858-9 Set 8. MC Bustos, F. Concha, R. Burger and EM Tory: Sedimentation and Thickening. Phenomenological Foundation and Mathematical Theory. 1999 ISBN 0-7923-5960-7 9. AP Wierzbicki, M. Makowski and J. Wessels (eds.): Model-Based Decision...
Page 297 - The FitzHugh-Nagumo Model. Bifurcation and Dynamics. 2000 ISBN 0-7923-6427-9 11. S. Anija: Analysis and Control of Age-Dependent Population Dynamics. 2000 ISBN 0-7923-6639-5 12. S. Dominich: Mathematical Foundations of Informal Retrieval. 2001 ISBN 0-7923-686 1-4 13. HAK Mastebroek and JE Vos (eds.): Plausible Neural Networks for Biological Modelling. 2001 ISBN 0-7923-7192-5 14. AK Gupta and T. Varga: An Introduction to Actuarial Mathematics. 2002 ISBN 1-4020-0460-5 15. H. Sedaghat: Nonlinear Difference...
References to this book
A Singular Introduction to Commutative Algebra Gert-Martin Greuel,Gerhard Pfister Limited preview - 2007 |
Computational Commutative and Non-commutative Algebraic Geometry Svetlana Cojocaru,Gerhard Pfister,Victor Ufnarovski No preview available - 2005 |