### What people are saying -Write a review

We haven't found any reviews in the usual places.

### Contents

 Section 1 1 Section 2 24 Section 3 46
 Section 4 60 Section 5 61 Section 6 102

### Popular passages

Page 106 - If a straight line be divided into two equal parts, and also into two unequal parts, the rectangle contained by the unequal parts, together with the square on the line between the points of section, is equal to the square on half the line.
Page 119 - The straight line joining the middle points of two sides of a triangle is parallel to the third side, and equal to half of it.
Page 127 - The areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles.
Page 110 - If two triangles have two sides of one equal, respectively, to two sides of the other...
Page 120 - ... 4. Show that the areas of similar triangles are to each other as the squares of the homologous sides.
Page 104 - In any triangle, the square of a side opposite an acute angle is equal to the sum of the squares of the other two sides diminished by twice the product of one of those sides and the projection of the other side upon it.
Page 126 - Every point in the bisector of an angle is equally distant from the sides of the angle ; and every point not in the bisector, but within the angle, is unequally distant from the sides of the Jingle.
Page 138 - A line which divides two sides of a triangle proportionally is parallel to the third side.
Page 116 - ... they have an angle of one equal to an angle of the other and the including sides are proportional; (c) their sides are respectively proportional.
Page 92 - Find the angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle.