## Introduction to Hilbert SpaceCompletely self-contained ... All proofs are given in full detail ... recommended for unassisted reading by beginners ... For teaching purposes this book is ideal. --Proceedings of the Edinburgh Mathematical Society The book is easy to read and, although the author had in mind graduate students, most of it is obviously appropriate for an advanced undergraduate course. It is also a book which a reasonably good student might read on his own. --Mathematical Reviews This textbook evolved from a set of course notes for first- or second-year graduate students in mathematics and related fields such as physics. It presents, in a self-contained way, various aspects of geometry and analysis of Hilbert spaces, including the spectral theorem for compact operators. Over 400 exercises provide examples and counter-examples for definitions and theorems in the book, as well as generalization of some material in the text. Aside from being an exposition of basic material on Hilbert space, this book may also serve as an introduction to other areas of functional analysis. The only prerequisite for understanding the material is a standard foundation in advanced calculus. The main notions of linear algebra, such as vector spaces, bases, etc., are explained in the first chapter of the book. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.