An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems

Front Cover
Cambridge University Press, Jan 14, 2008 - Mathematics
Professor Merrie Bergmann presents an accessible introduction to the subject of many-valued and fuzzy logic designed for use on undergraduate and graduate courses in non-classical logic. Bergmann discusses the philosophical issues that give rise to fuzzy logic - problems arising from vague language - and returns to those issues as logical systems are presented. For historical and pedagogical reasons, three-valued logical systems are presented as useful intermediate systems for studying the principles and theory behind fuzzy logic. The major fuzzy logical systems - Lukasiewicz, Gödel, and product logics - are then presented as generalisations of three-valued systems that successfully address the problems of vagueness. A clear presentation of technical concepts, this book includes exercises throughout the text that pose straightforward problems, that ask students to continue proofs begun in the text, and that engage students in the comparison of logical systems.

What people are saying - Write a review

We haven't found any reviews in the usual places.


Front Cover
2 Review of Classical Propositional Logic
3 Review of Classical FirstOrder Logic
4 Alternative Semantics for TruthValues
6 Derivation Systems for ThreeValued Propositional Logic
9 Alternative Semantics for ThreeValued Logic
10 The Principle of Charity Reconsidered and a New
12 Fuzzy Algebras
13 Derivation Systems for Fuzzy Propositional Logic
if we really wish to assert that well any person
15 Derivation Systems for Fuzzy FirstOrder Logic

8 Derivation Systems for ThreeValued FirstOrder Logic
16 Extensions of Fuzziness
17 Fuzzy Membership Functions

Common terms and phrases

Popular passages

Page 14 - All traditional logic habitually assumes that precise symbols are being employed. It is therefore not applicable to this terrestrial life, but only to an imagined celestial existence.
Page 14 - It is one of the paper's main contentions that with the provision of an adequate symbolism the need is removed for regarding vagueness as a defect of language. The ideal standard of precision which those have in mind who use vagueness as a term of reproach, when it is not a shifting standard of a relatively less vague symbol, is the standard of scientific precision. But the indeterminacy which is characteristic of vagueness is present also in all scientific measurement. "There is no...
Page 14 - laws" of logic or mathematics prescribe modes of existence to which intelligible discourse must necessarily conform. It will be argued, on the contrary, that deviations from the logical or mathematical standards of precision are all pervasive in symbolism; that to label them as subjective aberrations sets an impassable gulf between formal laws and experience and leaves the usefulness of the formal sciences an insoluble mystery.
Page 14 - But the indeterminacy which is characteristic of vagueness is present also in all scientific measurement. "There is no experimental method of assigning numerals in a manner which is free from error. If we limit ourselves strictly to experimental facts we recognize that there is no such thing as true measurement, and therefore no such thing as an error involved in a departure from it."6 Vagueness is...
Page 7 - Aguzzoli S., Ciabattoni A. [2000], Finiteness in infinite-valued Lukasiewicz logic, Journal of Logic Language and Information, 9, 5-29.

About the author (2008)

Merrie Bergmann is associate professor in the department of computer science at Smith College. She is the co-author, with James Moor and Jack Nelson, of The Logic Book.

Bibliographic information