An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

Etukansi
Cambridge University Press, 23.3.2000
0 Arvostelut
Arvosteluja ei vahvisteta, mutta Google tarkistaa ne valheellisen sisällön varalta ja poistaa tällaisen sisällön
This is the first comprehensive introduction to Support Vector Machines (SVMs), a generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software.
 

Mitä ihmiset sanovat - Kirjoita arvostelu

Yhtään arvostelua ei löytynyt.

Sisältö

The Learning Methodology
1
Linear Learning Machines
9
KernelInduced Feature Spaces
26
Generalisation Theory
52
Optimisation Theory
79
Support Vector Machines
93
Implementation Techniques
125
Applications of Support Vector Machines
149
A Pseudocode for the SMO Algorithm
162
References
173
Index
187
Tekijänoikeudet

Muita painoksia - Näytä kaikki

Yleiset termit ja lausekkeet

Kirjaluettelon tiedot