Autonomic computing: concepts, infrastructure, and applications

Front Cover
CRC Press/Taylor & Francis, 2007 - Computers - 539 pages
0 Reviews
The complexity of modern computer networks and systems, combined with the extremely dynamic environments in which they operate, is beginning to outpace our ability to manage them. Taking yet another page from the biomimetics playbook, the autonomic computing paradigm mimics the human autonomic nervous system to free system developers and administrators from performing and overseeing low-level tasks. Surveying the current path toward this paradigm, Autonomic Computing: Concepts, Infrastructure, and Applications offers a comprehensive overview of state-of-the-art research and implementations in this emerging area.This book begins by introducing the concepts and requirements of autonomic computing and exploring the architectures required to implement such a system. The focus then shifts to the approaches and infrastructures, including control-based and recipe-based concepts, followed by enabling systems, technologies, and services proposed for achieving a set of "self-*" properties, including self-configuration, self-healing, self-optimization, and self-protection. In the final section, examples of real-world implementations reflect the potential of emerging autonomic systems, such as dynamic server allocation and runtime reconfiguration and repair.Collecting cutting-edge work and perspectives from leading experts, Autonomic Computing: Concepts, Infrastructure, and Applications reveals the progress made and outlines the future challenges still facing this exciting and dynamic field.

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

2
20
A Requirements Engineering Perspective on Autonomic
27
A SystemWide Perspective
35
Copyright

25 other sections not shown

Other editions - View all

Common terms and phrases

About the author (2007)

SALIM HARIRI, PhD, is a professor in the Department of Electrical and Computer Engineering at the University of Arizona, Tucson, where he directs the High Performance Distributed Computing Laboratory. He is the Editor in Chief for the Cluster Computing Journal and the founder of IEEE International Symposium on High Performance Distributed Computing (HPDC). He is coauthor/editor of three books on parallel and distributed computing and has published over a hundred journal articles and conference papers.

MANISH PARASHAR, PhD, is an associate professor in the Department of Electrical and Computer Engineering at Rutgers, The State University of New Jersey, where he is Director of The Applied Software Systems Laboratory (TASSL). Professor Parashar is a recipient of the NSF CAREER award and the Enrico Fermi scholarship, and is a senior member of the IEEE. In addition to publishing over a hundred technical papers in international journals and conferences, Professor Parashar has coauthored/edited three books, and has contributed to several others, in the area of parallel and distributed computing.

Bibliographic information