## Basic Noncommutative Geometry"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Other editions - View all

### Common terms and phrases

A-module abelian action algebra of smooth AT-theory automorphisms Banach algebra bimodule called classical quotient Cn(A cochain commutative algebra commutative C*-algebra compact Hausdorff space compact operators Connes Connes-Chern character corresponding crossed product algebra cyclic cocycle cyclic cohomology defined definition deformation denote derivation dual elements equivalence bimodule exact sequence Example Exercise fact finite dimensional foliation Fredholm module Fredholm operators functor Gelfand Gelfand-Naimark graded group algebra group G groupoid algebra Hausdorff space Hilbert space Hochschild and cyclic Hochschild cohomology homology homotopy Hopf algebra ideal idempotent induces inner product isomorphism Let G Let H Lie algebra linear matrix Mn(A Morita equivalent morphisms multiplication noncommutative geometry noncommutative quotient noncommutative spaces noncommutative torus norm obtain pairing Poisson algebra projective modules proof representation Rham selfadjoint smooth manifold sp(a spectrum structure summable surjective tensor product theorem theory topological unital algebra unitary vector bundle vector space