Causal Inference in Statistics: A Primer

Front Cover
John Wiley & Sons, Feb 3, 2016 - Mathematics - 160 pages
0 Reviews

Many of the concepts and terminology surrounding modern causal inference can be quite intimidating to the novice. Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision-making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

Preface
List of Figures
About the Companion Website
Statistical and Causal Models
Chapter 2 Graphical Models and Their Applications
Chapter 3 The Effects of Interventions
Chapter 4 Counterfactuals and Their Applications
References
Index
EULA
Copyright

Other editions - View all

Common terms and phrases

About the author (2016)

Judea Pearl is Professor of Computer Science and Statistics at the University of California, Los Angeles, where he directs the Cognitive Systems Laboratory and conducts research in artificial intelligence, causal inference and philosophy of science. He is a Co-Founder and Editor of the Journal of Causal Inference and the author of three landmark books in inference-related areas. His latest book, Causality: Models, Reasoning and Inference (Cambridge, 2000, 2009), has introduced many of the methods used in modern causal analysis. It won the Lakatosh Award from the London School of Economics and is cited by more than 10,000 scientific publications.

Pearl is a member of the National Academy of Sciences, the National Academy of Engi­neering , and a Founding Fellow of the Association for Artificial Intelligence. He is a recipient of numerous prizes and awards, including the Technion's Harvey Prize and the ACM Alan Turing Award for fundamental contributions to probabilistic and causal reasoning.

Madelyn Glymour is a data analyst at Carnegie Mellon University, and a science writer and editor for the Cognitive Systems Laboratory at UCLA. Her interests lie in causal discovery and in the art of making complex concepts accessible to broad audiences.

Nicholas P. Jewell is Professor of Biostatistics and Statistics at the University of California, Berkeley. He has held various academic and administrative positions at Berkeley since his arrival in 1981, most notably serving as Vice Provost from 1994 to 2000. He has also held academic appointments at the University of Edinburgh, Oxford University, the London School of Hygiene and Tropical Medicine, and at the University of Kyoto. In 2007, he was a Fellow at the Rockefeller Foundation Bellagio Study Center in Italy.

Jewell is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics, and the American Association for the Advancement of Science (AAAS). He is a past winner of the Snedecor Award and the Marvin Zelen Leadership Award in Statistical Science from Harvard University. He is currently the Editor of the Journal of the American Statistical Association - Theory & Methods , and Chair of the Statistics Section of AAAS. His research focuses on the application of statistical methods to infectious and chronic disease epidemiology, the assessment of drug safety, time-to-event analyses, and human rights.

Videos:

Introduction to Causality – Part I with Professors Judea Pearl and Nicholas P. Jewell

Teaching Causality – Part I with Professors Judea Pearl and Rob Gould

In order to access Part II for each of these videos, please register with Statistics Views for free

Bibliographic information