Cohomology of Number Fields

Front Cover
Springer Science & Business Media, Feb 18, 2008 - Mathematics - 826 pages
0 Reviews

This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

I
3
III
12
IV
25
V
36
VI
45
VII
60
VIII
74
IX
80
XLV
391
XLVI
401
XLVII
409
XLVIII
425
XLIX
442
L
451
LI
465
LII
471

X
83
XI
97
XII
101
XIII
107
XIV
111
XV
120
XVI
127
XVII
136
XVIII
147
XIX
164
XX
171
XXI
181
XXII
189
XXIII
202
XXIV
210
XXV
220
XXVI
224
XXVII
245
XXVIII
252
XXIX
256
XXX
267
XXXI
268
XXXII
273
XXXIII
289
XXXIV
301
XXXV
312
XXXVI
321
XXXVII
335
XXXVIII
337
XXXIX
343
XL
349
XLI
356
XLII
360
XLIII
371
XLIV
378
LIII
479
LIV
502
LV
512
LVI
521
LVII
522
LVIII
536
LIX
543
LX
553
LXI
557
LXII
574
LXIII
599
LXIV
602
LXV
618
LXVI
624
LXVII
642
LXVIII
647
LXIX
656
LXX
666
LXXI
678
LXXII
686
LXXIII
697
LXXIV
706
LXXV
721
LXXVI
722
LXXVII
731
LXXVIII
735
LXXIX
751
LXXX
763
LXXXI
771
LXXXII
785
LXXXIV
791
LXXXV
799
LXXXVI
805
LXXXVII
820
Copyright

Other editions - View all

Common terms and phrases

References to this book

All Book Search results »

About the author (2008)

Alexander Schmidt, Dr. Phil. (2005), Friedrich-Schiller-University Jena, is Research Fellow at the Sonderforschungsbereich 482 at the University of Jena.

Bibliographic information