Combinatorics: A Guided Tour

Front Cover
MAA, 2010 - Mathematics - 391 pages
1 Review
Combinatorics is mathematics of enumeration, existence, construction, and optimization questions concerning finite sets. This text focuses on the first three types of questions and covers basic counting and existence principles, distributions, generating functions, recurrence relations, Polya theory, combinatorial designs, error correcting codes, partially ordered sets, and selected applications to graph theory including the enumeration of trees, the chromatic polynomial, and introductory Ramsey theory. The only prerequisites are single-variable calculus and familiarity with sets and basic proof techniques. The text emphasizes the brands of thinking that are characteristic of combinatorics: bijective and combinatorial proofs, recursive analysis, and counting problem classification. It is flexible enough to be used for undergraduate courses in combinatorics, second courses in discrete mathematics, introductory graduate courses in applied mathematics programs, as well as for independent study or reading courses.

What makes this text a guided tour are the approximately 350 reading questions spread throughout its eight chapters. These questions provide checkpoints for learning and prepare the reader for the end-of-section exercises of which there are over 470. Most sections conclude with Travel Notes that add color to the material of the section via anecdotes, open problems, suggestions for further reading, and biographical information about mathematicians involved in the discoveries.

What people are saying - Write a review

We haven't found any reviews in the usual places.


Distributions and Combinatorial Proofs
Algebraic Tools
Famous Number Families
Counting Under Equivalence
Combinatorics on Graphs
Designs and Codes
Partially Ordered Sets
List of Notation
About the Author

Common terms and phrases

About the author (2010)

David R. Mazur is Associate Professor of Mathematics at Western New England College in Springfield, Massachusetts. He was born on October 23, 1971 in Washington, D.C. He received his undergraduate degree in Mathematics from the University of Delaware in 1993, and also won the Department of Mathematical Sciences' William D. Clark prize for 'unusual ability' in the major that year. He then received two fellowships for doctoral study in the Department of Mathematical Sciences (now the Department of Applied Mathematics and Statistics) at The Johns Hopkins University. From there he received his Master's in 1996 and his Ph.D. in 1999 under the direction of Leslie A. Hall, focusing on operations research, integer programming, and polyhedral combinatorics. His dissertation, 'Integer Programming Approaches to a Multi-Facility Location Problem', won first prize in the 1999 joint United Parcel Service/INFORMS Section on Location Analysis Dissertation Award Competition. The competition occurs once every two years to recognize outstanding dissertations in the field of location analysis. Professor Mazur began teaching at Western New England College in 1999 and received tenure and promotion to Associate Professor in 2005. He was a 2000-2001 Project NExT fellow and continues to serve this program as a consultant. He is an active member of the Mathematical Association of America, having co-organized several sessions at national meetings. He currently serves on the MAA's Membership Committee.

Bibliographic information