Comparison of Genetic Algorithms with Conjugate Gradient Methods, Volume 2093

Front Cover
National Aeronautics and Space Administration, 1972 - Algorithms - 43 pages
0 Reviews
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

Common terms and phrases

Bibliographic information