Continuous Functions of Vector Variables

Springer Science & Business Media, Jul 31, 2002 - Mathematics - 210 pages
This text is appropriate for a one-semester course in what is usually called ad vanced calculus of several variables. The focus is on expanding the concept of continuity; specifically, we establish theorems related to extreme and intermediate values, generalizing the important results regarding continuous functions of one real variable. We begin by considering the function f(x, y, ... ) of multiple variables as a function of the single vector variable (x, y, ... ). It turns out that most of the n treatment does not need to be limited to the finite-dimensional spaces R , so we will often place ourselves in an arbitrary vector space equipped with the right tools of measurement. We then proceed much as one does with functions on R. First we give an algebraic and metric structure to the set of vectors. We then define limits, leading to the concept of continuity and to properties of continuous functions. Finally, we enlarge upon some topological concepts that surface along the way. A thorough understanding of single-variable calculus is a fundamental require ment. The student should be familiar with the axioms of the real number system and be able to use them to develop elementary calculus, that is, to define continuous junction, derivative, and integral, and to prove their most important elementary properties. Familiarity with these properties is a must. To help the reader, we provide references for the needed theorems.

What people are saying -Write a review

We haven't found any reviews in the usual places.

Contents

 II 1 III 3 IV 7 V 13 VI 18 VII 23 VIII 33 IX 37
 XIX 90 XX 95 XXI 100 XXII 105 XXIII 111 XXIV 119 XXV 124 XXVI 129

 X 42 XI 48 XII 55 XIII 58 XIV 65 XV 73 XVI 78 XVII 85
 XXVII 133 XXVIII 140 XXIX 149 XXX 155 XXXI 203 XXXII 205 Copyright