Detection, Estimation, and Modulation Theory, Part 1

What people are saying  Write a review
We haven't found any reviews in the usual places.
Contents
Introduction l  1 
Classical Detection and Estimation Theory  19 
Representations of Random Processes  166 
Copyright  
7 other sections not shown
Other editions  View all
Common terms and phrases
analog approximate assume assumption bandwidth Bayes binary block diagram bound channel Chapter coefficients colored noise communication system Consider correlation corresponds covariance function covariance matrix decision space defined denote derive detection problem differential equation discussion eigenfunctions eigenvalues energy equal estimation problem estimation theory expression finite frequency Gaussian process Gaussian random variable hypotheses impulse response input integral equation interest known signal likelihood ratio test linear filter linear modulation MAP estimate meansquare error minimize MMSE nonlinear nonrandom obtain optimum receiver orthogonal signals output parameter performance phase posteriori probability density probability of error Property radar realizable received signal received waveform result sample function scalar Section shown in Fig simple example solution solve spectral height spectrum stationary processes statistically independent sufficient statistic techniques threshold Trans transform transmitted unrealizable filter vector Verify waveform white noise whitening filter zero zeromean Gaussian