Essential MATLAB for Engineers and Scientists

Front Cover
Elsevier, Jan 29, 2007 - Mathematics - 448 pages
1 Review

Essential MATLAB for Engineers and Scientists, Third Edition, is an essential guide to MATLAB as a problem-solving tool. It presents MATLAB both as a mathematical tool and a programming language, giving a concise and easy-to-master introduction to its potential and power.

Stressing the importance of a structured approach to problem solving, the text provides a step-by-step method for program design and algorithm development. It includes numerous simple exercises for hands-on learning, a chapter on algorithm development and program design, and a concise introduction to useful topics for solving problems in later engineering and science courses: vectors as arrays, arrays of characters, GUIs, advanced graphics, and simulation and numerical methods.

The text is ideal for undergraduates in engineering and science taking a course on Matlab.

  • Numerous simple exercises give hands-on learning
  • A chapter on algorithm development and program design
  • Common errors and pitfalls highlighted
  • Concise introduction to useful topics for solving problems in later engineering and science courses: vectors as arrays, arrays of characters, GUIs, advanced graphics, simulation and numerical methods
  • A new chapter on dynamical systems shows how a structured approach is used to solve more complex problems.
  • Text and graphics in four colour
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

ESSENTIALS
1
APPLICATIONS
305
Syntax quick reference
390
Operators
395
Command and functionquick reference
396
ASCII character codes
405
Solutions to selected exercises
406
Index
421
Copyright

Other editions - View all

Common terms and phrases

About the author (2007)

Daniel Valentine is a Professor of Mechanical and Aeronautical Engineering at Clarkson University and Affiliate Director of the Clarkson Space Grant Program which is part of the New York NASA Space Grant Consortium. This program has provided support for undergraduate research appointments, and for graduate students. He is currently investigating the nonlinear dynamics of two-dimensional, Navier-Stokes flows as part of his work on the development of computational methods to solve fluid dynamics problems. He is also working on the flow-structure interaction of long-span bridges, unsteady hydrodynamics and offshore renewable energy. Other activities include investigations to develop a computational method to predict the effect of a marine propulsor on wave resistance of ships, to examine the effect of density stratification on rotating flows, to develop computational tools to predict the time-averaged properties of high-Reynolds number flows among other fluid mechanics problems.

Bibliographic information