## Feynman Lectures on GravitationThe Feynman Lectures on Gravitation are based on notes prepared during a course on gravitational physics that Richard Feynman taught at Caltech during the 1962-63 academic year. For several years prior to these lectures, Feynman thought long and hard about the fundamental problems in gravitational physics, yet he published very little. These lectures represent a useful record of his viewpoints and some of his insights into gravity and its application to cosmology, superstars, wormholes, and gravitational waves at that particular time. The lectures also contain a number of fascinating digressions and asides on the foundations of physics and other issues.Characteristically, Feynman took and untraditional non-geometric approach to gravitation and general relativity based on the underlying quantum aspects of gravity. Hence, these lectures contain a unique pedagogical account of the development of Einstein’s general relativity as the inevitable result of the demand for a self-consistent theory of a massless spin-2 field (the graviton) coupled to the energy-momentum tensor of matter. This approach also demonstrates the intimate and fundamental connection between gauge invariance and the Principle of Equivalence. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Other editions - View all

### Common terms and phrases

acceleration amplitude antimatter assume behavior Bryce DeWitt calculate charge classical components compute consider construct correct corresponding cosmological coupling covariant curvature tensor deduce defined density derivatives described diagrams distance divergence earth effects Einstein electrodynamics electromagnetic electron example exchange expression Feyn Feynman field equation field theory Figure finite formula function galaxies gauge invariance geometrical gravitational constant gravitational field gravitational forces gravitational waves graviton integral interaction involving Lagrangian lectures Mach's Principle mass massless spin-2 matter measured metric tensor momentum nebulae neutrino Newtonian nucleon objects observer obtain one-loop orbits particles perturbative photons physical polarization possible potential principle of equivalence problem proportional quantity quantized quantum gravity quantum mechanics quantum theory radiation radius region relativistic renormalizable result scalar Schwarzschild simply solutions space spherical spin star stress-energy tensor string theory superstars supersymmetry surface symmetric temperature theory of gravitation transformation universe vector velocity Venutian wormhole zero