## Fundamentals of Mathematical Physics |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Contents

chapter one vector algebra | 1 |

chapter two matrix and tensor algebra | 17 |

chapter three vector calculus | 59 |

Copyright | |

6 other sections not shown

### Other editions - View all

### Common terms and phrases

amplitude analytic function arbitrary axis becomes Bessel functions Bessel's equation boundary conditions called coefficients column vector complex components compute Consider constant convergence coordinate system corresponding cosh curl curve cylinder defined density differential equation Dirichlet problem divergence divergence theorem eigenvalues element evaluate example expansion finite formula Fourier transform given gives Green's function Hence homogeneous infinite infinity initial conditions integral theorem interval inversion theorem Laplace transform Laplace's equation Legendre's equation linear linearly independent matrix obtain orthogonal particle particular integral polynomial potential power series problem radius represents result Riemann surface satisfies Eq scalar Show side of Eq single-valued singular sinh ky ſº solution of Eq solve space sphere spherical coordinates ſſ Suppose tensor tion two-dimensional vanishes variable volume wave equation Wronskian zero