Galois Theory

John Wiley & Sons, 24 oct. 2011 - 584 pages
An introduction to one of the most celebrated theories of mathematics

Galois theory is one of the jewels of mathematics. Its intrinsic beauty, dramatic history, and deep connections to other areas of mathematics give Galois theory an unequaled richness. David Cox’s Galois Theory helps readers understand not only the elegance of the ideas but also where they came from and how they relate to the overall sweep of mathematics.

Galois Theory covers classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields. The book also delves into more novel topics, including Abel’s theory of Abelian equations, the problem of expressing real roots by real radicals (the casus irreducibilis), and the Galois theory of origami. Anyone fascinated by abstract algebra will find careful discussions of such topics as:

  • The contributions of Lagrange, Galois, and Kronecker
  • How to compute Galois groups
  • Galois’s results about irreducible polynomials of prime or prime-squared degree
  • Abel’s theorem about geometric constructions on the lemniscate

With intriguing Mathematical and Historical Notes that clarify the ideas and their history in detail, Galois Theory brings one of the most colorful and influential theories in algebra to life for professional algebraists and students alike.


Avis des internautes - Rédiger un commentaire

Aucun commentaire n'a été trouvé aux emplacements habituels.

Table des matières

Part I Polynomials
Part II Fields
Part III Applications
Part IV Further Topics
Appendix A Abstract Algebra
Appendix B Hints to Selected Exercises
Droits d'auteur

Autres éditions - Tout afficher

Expressions et termes fréquents

À propos de l'auteur (2011)

DAVID A. COX is a professor of mathematics at Amherst College. He pursued his undergraduate studies at Rice University and earned his PhD from Princeton in 1975. The main focus of his research is algebraic geometry, though he also has interests in number theory and the history of mathematics. He is the author of Primes of the Form x2 + ny2, published by Wiley, as well as books on computational algebraic geometry and mirror symmetry.

Informations bibliographiques