Geometric Asymptotics

Front Cover
American Mathematical Soc., 1990 - Mathematics - 480 pages
1 Review
Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence. Chapters included in this book are: Chapter I, Introduction. The method of stationary phase; Appendix I, Morse's lemma and some generalizations; Chapter II, Differential operators and asymptotic solutions; Chapter III, Geometrical optics; Chapter IV, Symplectic geometry; Chapter V, Geometric quantization; Chapter VI, Geometric aspects of distribution; Appendix to Chapter VI, The Plancherel formula for the complex semisimple Lie groups; Chapter VII, Compound Asymptotics; Appendix II, Various functorial constructions; Index.

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

References to this book

All Book Search results »

About the author (1990)

Guillemin is Professor of Mathematics, Massachusetts Institute of Technology.

Bibliographic information