Handbook of Logic and Proof Techniques for Computer Science

Front Cover
Springer Science & Business Media, Jan 17, 2002 - Computers - 245 pages
0 Reviews
Logic is, and should be, the core subject area of modern mathemat ics. The blueprint for twentieth century mathematical thought, thanks to Hilbert and Bourbaki, is the axiomatic development of the subject. As a result, logic plays a central conceptual role. At the same time, mathematical logic has grown into one of the most recondite areas of mathematics. Most of modern logic is inaccessible to all but the special ist. Yet there is a need for many mathematical scientists-not just those engaged in mathematical research-to become conversant with the key ideas of logic. The Handbook of Mathematical Logic, edited by Jon Bar wise, is in point of fact a handbook written by logicians for other mathe maticians. It was, at the time of its writing, encyclopedic, authoritative, and up-to-the-moment. But it was, and remains, a comprehensive and authoritative book for the cognoscenti. The encyclopedic Handbook of Logic in Computer Science by Abramsky, Gabbay, and Maibaum is a wonderful resource for the professional. But it is overwhelming for the casual user. There is need for a book that introduces important logic terminology and concepts to the working mathematical scientist who has only a passing acquaintance with logic. Thus the present work has a different target audience. The intent of this handbook is to present the elements of modern logic, including many current topics, to the reader having only basic mathe matical literacy.
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

II
1
III
2
IV
3
VI
4
VII
5
VIII
6
X
7
XI
8
CXXVIII
93
CXXX
95
CXXXI
96
CXXXII
97
CXXXIV
98
CXXXVIII
99
CXL
100
CXLII
101

XIII
9
XV
10
XVI
11
XVIII
12
XIX
13
XXI
14
XXII
15
XXV
16
XXVII
17
XXIX
19
XXX
20
XXXI
21
XXXIV
22
XXXVII
23
XXXVIII
25
XXXIX
26
XLII
28
XLIII
29
XLIV
30
XLV
31
XLVII
32
XLIX
33
LI
34
LIII
35
LIV
36
LVI
37
LVII
38
LVIII
39
LIX
40
LXIV
41
LXVIII
42
LXX
43
LXXI
44
LXXII
45
LXXIV
46
LXXVI
47
LXXVII
48
LXXVIII
50
LXXX
51
LXXXII
52
LXXXIII
53
LXXXIV
54
LXXXV
55
LXXXVI
56
LXXXVIII
57
XC
58
XCI
59
XCIII
60
XCIV
61
XCV
63
XCVI
64
XCVIII
65
XCIX
66
C
67
CII
69
CIV
70
CV
71
CVI
72
CVII
74
CVIII
75
CIX
80
CXI
81
CXII
82
CXIV
85
CXV
86
CXVII
87
CXX
89
CXXII
90
CXXIV
91
CXXVI
92
CXLIII
102
CXLIV
103
CXLVIII
104
CL
105
CLII
106
CLIV
107
CLV
108
CLVIII
109
CLXI
112
CLXII
113
CLXIV
115
CLXVI
118
CLXVIII
121
CLXIX
122
CLXXII
123
CLXXV
125
CLXXVI
126
CLXXIX
127
CLXXX
128
CLXXXII
129
CLXXXIII
130
CLXXXV
131
CLXXXVII
133
CLXXXVIII
134
CXC
135
CXCI
136
CXCIII
137
CXCVI
138
CXCVII
139
CXCVIII
140
CC
142
CCI
145
CCII
146
CCIV
147
CCV
149
CCVII
150
CCVIII
151
CCXII
152
CCXVI
153
CCXX
154
CCXXI
156
CCXXIII
157
CCXXIV
158
CCXXV
159
CCXXVI
160
CCXXVII
161
CCXXVIII
162
CCXXX
163
CCXXXII
164
CCXXXV
167
CCXXXVI
168
CCXXXVII
169
CCXXXIX
170
CCXL
171
CCXLII
172
CCXLIII
175
CCXLIV
176
CCXLIX
177
CCL
178
CCLIII
179
CCLVI
180
CCLVIII
181
CCLXII
182
CCLXIII
183
CCLXIV
189
CCLXV
219
CCLXVI
231
CCLXVII
237
Copyright

Other editions - View all

Common terms and phrases

References to this book

All Book Search results »

About the author (2002)

Steven Krantz, Ph.D., is Chairman of the Mathematics Department at Washington University in St. Louis. An award-winning teacher and author, Dr. Krantz has written more than 45 books on mathematics, including "Calculus Demystified," another popular title in this series. He lives in St. Louis, Missouri.