High-Performance Computing: Paradigm and Infrastructure

Front Cover
John Wiley & Sons, Nov 18, 2005 - Computers - 500 pages
The state of the art of high-performance computing

Prominent researchers from around the world have gathered to present the state-of-the-art techniques and innovations in high-performance computing (HPC), including:
* Programming models for parallel computing: graph-oriented programming (GOP), OpenMP, the stages and transformation (SAT) approach, the bulk-synchronous parallel (BSP) model, Message Passing Interface (MPI), and Cilk
* Architectural and system support, featuring the code tiling compiler technique, the MigThread application-level migration and checkpointing package, the new prefetching scheme of atomicity, a new "receiver makes right" data conversion method, and lessons learned from applying reconfigurable computing to HPC
* Scheduling and resource management issues with heterogeneous systems, bus saturation effects on SMPs, genetic algorithms for distributed computing, and novel task-scheduling algorithms
* Clusters and grid computing: design requirements, grid middleware, distributed virtual machines, data grid services and performance-boosting techniques, security issues, and open issues
* Peer-to-peer computing (P2P) including the proposed search mechanism of hybrid periodical flooding (HPF) and routing protocols for improved routing performance
* Wireless and mobile computing, featuring discussions of implementing the Gateway Location Register (GLR) concept in 3G cellular networks, maximizing network longevity, and comparisons of QoS-aware scatternet scheduling algorithms
* High-performance applications including partitioners, running Bag-of-Tasks applications on grids, using low-cost clusters to meet high-demand applications, and advanced convergent architectures and protocols

High-Performance Computing: Paradigm and Infrastructure is an invaluable compendium for engineers, IT professionals, and researchers and students of computer science and applied mathematics.

What people are saying - Write a review

We haven't found any reviews in the usual places.


PART 1 Programming Model
PART 2 Architectural and System Support
PART 3 Scheduling and Resource Management
PART 4 Clusters and Grid Computing
PART 5 PeertoPeer Computing
PART 6 Wireless and Mobile Computing
PART 7 High Performance Applications

Other editions - View all

Common terms and phrases

About the author (2005)

LAURENCE T. YANG is a Professor of Computer Science, St. Francis Xavier University, Canada. Dr. Yang served as the vice chair of IEEE Technical Committee of Supercomputing Applications (TCSA) until 2004 and as an executive committee member of the IEEE Technical Committee of Scalable Computing (TCSC) since 2004. Dr. Yang has also received many awards, including the Distinguished Contribution Award, 2004; Technical Achievement Award, 2004; Outstanding Achievement Award, 2002, University Research/Publication/Teaching Award, 2000–2001/2002–2003/2003–2004, and Canada Foundation for Innovation (CFI) Award, 2003.

MINYI GUO received his PhD from the University of Tsukuba, Japan. He is currently an Associate Professor in the Department of Computer Software at the University of Aizu, Japan. In addition, Dr. Guo is Editor in Chief of the International Journal of Embedded Systems, and has written and edited books in the area of parallel and distributed computing, as well as embedded and ubiquitous computing.

Bibliographic information