Hyperspectral Data Processing: Algorithm Design and Analysis

Front Cover
John Wiley & Sons, Feb 1, 2013 - Technology & Engineering - 1164 pages
0 Reviews

Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap.

Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections:

  • Part I: provides fundamentals of hyperspectral data processing
  • Part II: offers various algorithm designs for endmember extraction
  • Part III: derives theory for supervised linear spectral mixture analysis
  • Part IV: designs unsupervised methods for hyperspectral image analysis
  • Part V: explores new concepts on hyperspectral information compression
  • Parts VI & VII: develops techniques for hyperspectral signal coding and characterization
  • Part VIII: presents applications in multispectral imaging and magnetic resonance imaging

Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages.

Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.

 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

Overview and Introduction
iii
H r rllnfrmin mr
v
Preliminaries
xxii
ThreeDimensional Receiver Operating
xlix
Progressive Band Selection
3-23
Based Components Analysis Transforms
4-6
Algorithms IlDEEAs
4-9
Random Endmember Extraction Algorithms
4-77
Pixel Extraction and Information
18
Applications of Target Detection
30
Data Dimensionality Reduction
93
Progressive Band Dimensionality Process
108
Based Component Analysis Transforms
6
Binary Coding For Spectral Signatures
80
Vector Coding for Hyperspectral Signatures
P-9
Nonlinear Dimensionality Expansion
P-31

Simultaneous Endmember Extraction
4-90
Algorithms lSMEEAs
7
IREEAs
10
Design of Synthetic Image Experiments
8-4
Orthogonal Subspace Proiection Revisited
8-12
Exploration on Relationships among
8-58
Fishers Linear Spectral Mixture Analysis
12-16
rvi Lin rH r rlMix
17
Progressive Spectral Dimensionality Process
14-20
Virtual Dimensionality of Hyperspectral Data
15-5
Progressive Coding for Spectral Signatures
15-26
Applications
15-29
Hypwpectral Signal Characterization
9
Dynamic Dimensionality Allocation
10
KernelBased Linear Spectral Mixture Analysis
27-15
Conclusions
27-32
Techniques
30-33
Kalman FilterBased Estimation
30-82
Glossary
30-85
References
30-143
Index
4
Wavelet Representation for Hyperspectral
73
Copyright

Other editions - View all

Common terms and phrases

About the author (2013)

CHEIN-I CHANG, PhD, is a Professor in the Department of Computer Science and Electrical Engineering at the University of Maryland, Baltimore County. He established the Remote Sensing Signal and Image Processing Laboratory and conducts research in designing and developing signal processing algorithms for hyperspectral imaging, medical imaging, and documentation analysis. A Fellow of IEEE and SPIE, Dr. Chang has published over 125 refereed journal articles, including more than forty papers in the IEEE Transaction on Geoscience and Remote Sensing. In addition to authoring Hyperspectral Imaging: Techniques for Spectral Detection and Classification, as well as editing two books, Hyperspectral Data Exploitation: Theory and Applications and Recent Advances in Hyperspectral Signal and Imaging Processing and co-editing one book, High Performance Computing in Remote Sensing, he holds five patents and has several pending.

Bibliographic information