Minimax and Applications

Front Cover
Ding-Zhu Du, Panos M. Pardalos
Springer Science & Business Media, Oct 31, 1995 - Computers - 296 pages
0 Reviews
Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention.
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

II
1
IV
2
VII
4
VIII
5
IX
8
X
12
XI
13
XII
15
LXX
141
LXXII
142
LXXIII
146
LXXIV
147
LXXV
148
LXXVI
150
LXXVIII
153
LXXX
154

XIII
17
XIV
19
XVI
25
XVIII
26
XIX
31
XX
42
XXI
51
XXII
52
XXIII
55
XXV
56
XXVI
60
XXVII
66
XXVIII
69
XXX
70
XXXI
73
XXXII
77
XXXIV
79
XXXVI
81
XXXVII
83
XXXVIII
84
XXXIX
87
XL
96
XLI
97
XLIII
98
XLIV
99
XLV
100
XLVI
103
XLVII
105
XLVIII
106
L
109
LII
110
LIII
115
LIV
117
LV
118
LVI
119
LVIII
120
LIX
122
LX
127
LXI
129
LXIII
131
LXIV
132
LXV
134
LXVI
136
LXVII
137
LXVIII
139
LXIX
140
LXXXI
156
LXXXIII
157
LXXXV
159
LXXXVI
162
LXXXVII
167
LXXXVIII
169
LXXXIX
170
XC
173
XCII
175
XCIII
179
XCIV
188
XCV
191
XCVII
192
XCVIII
195
XCIX
203
C
217
CI
218
CII
219
CIV
221
CV
223
CVI
231
CVII
233
CVIII
238
CIX
239
CX
241
CXII
242
CXIII
244
CXIV
247
CXV
249
CXVI
250
CXVII
251
CXIX
252
CXX
253
CXXI
254
CXXII
258
CXXIII
263
CXXIV
268
CXXV
269
CXXVII
270
CXXVIII
274
CXXIX
281
CXXX
287
CXXXI
291
CXXXII
293
Copyright

Other editions - View all

Common terms and phrases

References to this book

All Book Search results »

Bibliographic information