Modern Theories of Many-Particle Systems in Condensed Matter Physics

Front Cover
Daniel C. Cabra, Andreas Honecker, Pierre Pujol
Springer Science & Business Media, Jan 5, 2012 - Technology & Engineering - 368 pages

Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations.

The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory.

As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.

 

Contents

1 Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors
1
2 Electronic Liquid Crystal Phases in Strongly Correlated Systems
53
3 Selected Topics in Graphene Physics
117
4 Strong Electronic Correlations Dynamical MeanField Theory and Beyond
145
5 Nonequilibrium Transport and Dephasing in CoulombBlockaded Quantum Dots
215
6 ManyBody Physics from a Quantum Information Perspective
245
7 Statistical Mechanics of Classical and Quantum Computational Complexity
295
8 NonPerturbative Methods in 1+1 Dimensional Quantum Field Theory
333
Copyright

Other editions - View all

Common terms and phrases