Multiple Time Series Models, Issue 148

Front Cover
Sage Publications, 2007 - Mathematics - 99 pages
0 Reviews
Multiple Time Series Models introduces researchers and students to the different approaches to modeling multivariate time series data including simultaneous equations, ARIMA, error correction models, and vector autoregression. Authors Patrick T. Brandt and John T. Williams focus on vector autoregression (VAR) models as a generalization of these other approaches and discuss specification, estimation, and inference using these models.

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

Introduction to Multiple Time Series Models
1
Basic Vector Autoregression Models
14
Examples of VAR Analyses
59
Copyright

3 other sections not shown

Other editions - View all

Common terms and phrases

About the author (2007)

Patrick T. Brandt is an Assistant Professor of Political Science in the School of Social Science at the University of Texas at Dallas. He has published in the American Journal of Political Science and Political Analysis. He teaches courses in social science research methods and social science statistics. His current research focuses on the development and application of time series models to the study of political institutions, political economy, and international relations. He received an A.B. (1990) in Government from the College of William and Mary, an M.S. (1997) in Mathematical Methods in the Social Sciences from Northwestern University, and a Ph.D. (2001) in Political Science from Indiana University. Before joining the faculty at the University of Texas at Dallas, he held positions at the University of North Texas, Indiana University, and as a fellow at the Harvard-MIT Data Center.

John T. Williams was Professor and Chair of the Department of Political Science at University of California, Riverside. He taught time series analysis at the Inter-university Consortium for Political and Social Research Summer Training Program for over ten years. His work uses statistical methods in the study of political economy and public policy. He co-authored two books: Compound Dilemmas: Democracy, Collective Action, and Superpower Rivalry (University of Michigan Press, 2001) and Public Policy Analysis: A Political Economy Approach (Houghton Mifflin, 2000). He published over twenty journal articles and book chapters on a wide range of topics, ranging from macroeconomic policy to defense spending to forest resource management. He was a leader in the application of new methods of statistical analysis to political science, especially the use of vector autoregression (VAR), Bayesian, and event count time series models. He received a B.A. (1979), an M.A. (1981) from North Texas State University, and a Ph.D. (1987) from the University of Minnesota. Before moving to Riverside in 2001, he held academic positions at the University of Illinois Chicago (1985-1990) and at Indiana University, Bloomington (1990-2001).