Optimal Control of Spatially Distributed Systems

Front Cover
University of Pennsylvania, 2007 - 109 pages
0 Reviews
Spatially distributed dynamical systems appear in several domains of engineering and science. Examples include multi-agent robotic systems, networks of embedded systems, arrays of mobile sensor networks for monitoring environment, platoon of vehicles in automated highways, deflection of beams and membranes, and the temperature distribution of thermally conductive materials. These systems can be described by a finite or infinite number of coupled subsystems that are possibly heterogeneous and of low dimensions. Even when each individual subsystem has a predictable behavior, the resulting spatially distributed dynamical system displays a rich and complex behavior when viewed as a whole. In this thesis, we present a mathematical framework to study the structural properties of optimal control of linear spatially distributed dynamical systems with arbitrary interconnection topologies. Our aim is to determine to what extent the optimal control law is localized in space and that how much information from far away subsystems is required. Specifically, we prove that global features of spatially distributed dynamical systems such as stability and optimal performance are inherently localized in space.

What people are saying - Write a review

We haven't found any reviews in the usual places.

Bibliographic information