Practical Reliability Engineering

Front Cover
John Wiley & Sons, Nov 22, 2011 - Technology & Engineering - 512 pages
With emphasis on practical aspects of engineering, this bestseller has gained worldwide recognition through progressive editions as the essential reliability textbook. This fifth edition retains the unique balanced mixture of reliability theory and applications, thoroughly updated with the latest industry best practices.

Practical Reliability Engineering fulfils the requirements of the Certified Reliability Engineer curriculum of the American Society for Quality (ASQ). Each chapter is supported by practice questions, and a solutions manual is available to course tutors via the companion website.

Enhanced coverage of mathematics of reliability, physics of failure, graphical and software methods of failure data analysis, reliability prediction and modelling, design for reliability and safety as well as management and economics of reliability programmes ensures continued relevance to all quality assurance and reliability courses.

Notable additions include:

  • New chapters on applications of Monte Carlo simulation methods and reliability demonstration methods.
  • Software applications of statistical methods, including probability plotting and a wider use of common software tools.
  • More detailed descriptions of reliability prediction methods.
  • Comprehensive treatment of accelerated test data analysis and warranty data analysis.
  • Revised and expanded end-of-chapter tutorial sections to advance students’ practical knowledge.

The fifth edition will appeal to a wide range of readers from college students to seasoned engineering professionals involved in the design, development, manufacture and maintenance of reliable engineering products and systems.

www.wiley.com/go/oconnor_reliability5

From inside the book

Contents

Preface to the First Edition xv
Preface to the Third Edition Revised xxi
Acknowledgements xxvii
Reliability Mathematics 19
Contents
Life Data Analysis and Probability Plotting 70
Monte Carlo Simulation 108
LoadStrength Interference 120
Design of Experiments and Analysis of Variance 284
Analysing Reliability Data 327
Reliability Testing 306
Reliability Demonstration and Growth 357
Reliability in Manufacture 386
Contents
Reliability Management 421
The Standard Cumulative Normal Distribution Function 451

Questions 132
Design for Reliability 177
Reliability of Mechanical Components and Systems 205
Electronic Systems Reliability 225
Contents
Software Reliability 262
Rank Tables 5 95 457
Failure Reporting Analysis and Corrective Action System FRACAS 465
54 Printer Yet to come
Matrix Algebra Revision 474
Copyright

Other editions - View all

Common terms and phrases

About the author (2011)

Patrick O'Connor, Stevenage, UK
Since 1995 Patrick O’Connor has worked as an independent consultant on engineering management, reliability, quality and safety. He received his engineering training at the Royal Air Force Technical College and served for 16 years in the RAF Engineer Branch, including tours on aircraft maintenance and in the Reliability and Maintainability office of the Ministry of Defence (Air). He was appointed Reliability Manager of British Aerospace Dynamics in 1980 and joined British Rail Research as Reliability Manager in 1993. Mr. O'Connor is the author of Practical Reliability Engineering, published by John Wiley (4th. edition 2002). He is also the author of the chapter on reliability and quality engineering in the Academic Press Encyclopaedia of Physical Science and Technology, and until 1999 was the UK editor of the Wiley journal Quality and Reliability Engineering International. He has written many papers and articles on quality and reliability engineering and management, and he lectures at universities and other venues on these subjects. He is editor of the Wiley book series in quality and reliability engineering.

Andre Kleyner, Delphi Electronics & Safety, USA
Andre Kleyner has over 25 years of engineering, research, consulting, and managerial experience specializing in reliability of electronic and mechanical systems designed to operate in severe environments. He received the doctorate in Mechanical Engineering from University of Maryland, and Master of Business Administration from Ball State University. Dr. Kleyner is a Global Reliability Engineering Leader with Delphi Electronics & Safety, and an adjunct professor at Purdue University. Andre developed and taught many training courses for reliability, quality, and design professionals. He also holds several US and foreign patents and authored professional publications on reliability, quality, and other engineering topics. Andre has is a senior member of American Society for Quality, Certified Reliability and Quality Engineer and Six-sigma black belt. He holds several US and foreign patents and hs authored many papers on the topics of warranty, lifecycle cost, reliability, and statistics. His areas of expertise are: Design for Reliability (DfR); Reliability of Electronic and Mechanical Systems; Product Test and Validation Planning; Physics of Failure; Warranty Management; Reliability Prediction and Warranty Forecasting; Weibull Analysis; Monte Carlo Simulation; Systems Engineering; Dependability analysis, and testing of energy systems for power electronics and electric/hybrid vehicles, and Training and consulting in these areas.

Bibliographic information