Reinforcement and Systemic Machine Learning for Decision Making

Front Cover
John Wiley & Sons, Aug 14, 2012 - Technology & Engineering - 312 pages
Reinforcement and Systemic Machine Learning for Decision Making

There are always difficulties in making machines that learn from experience. Complete information is not always available—or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm—creating new learning applications and, ultimately, more intelligent machines.

The first book of its kind in this new and growing field, Reinforcement and Systemic Machine Learning for Decision Making focuses on the specialized research area of machine learning and systemic machine learning. It addresses reinforcement learning and its applications, incremental machine learning, repetitive failure-correction mechanisms, and multiperspective decision making.

Chapters include:

  • Introduction to Reinforcement and Systemic Machine Learning
  • Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning
  • Systemic Machine Learning and Model
  • Inference and Information Integration
  • Adaptive Learning
  • Incremental Learning and Knowledge Representation
  • Knowledge Augmentation: A Machine Learning Perspective
  • Building a Learning System With the potential of this paradigm to become one of the more utilized in its field, professionals in the area of machine and systemic learning will find this book to be a valuable resource.

What people are saying - Write a review

We haven't found any reviews in the usual places.


Fundamentals of WholeSystem Systemic and Multiperspective
Reinforcement Learning
Systemic Machine Learning and Model
Inference and Information Integration
Adaptive Learning
Multiperspective and WholeSystem Learning
A Machine Learning Perspective
Building a Learning System
Statistical Learning Methods
Markov Processes

Other editions - View all

Common terms and phrases

About the author (2012)

Parag Kulkarni, PhD, DSc, is the founder and Chief Scientist of EKLat Research where he has empowered businesses through machine learning, knowledge management, and systemic management. He has been working within the IT industry for over twenty years. The recipient of several awards, Dr. Kulkarni is a pioneer in the field. His areas of research and product development include M-maps, intelligent systems, text mining, image processing, decision systems, forecasting, IT strategy, artificial intelligence, and machine learning. Dr. Kulkarni has over 100 research publications including several books.

Bibliographic information