Scientific Discovery: Computational Explorations of the Creative Processes

Front Cover
MIT Press, 1987 - Psychology - 357 pages
1 Review

Scientific discovery is often regarded as romantic and creative--and hence unanalyzable--whereas the everyday process of verifying discoveries is sober and more suited to analysis. Yet this fascinating exploration of how scientific work proceeds argues that however sudden the moment of discovery may seem, the discovery process can be described and modeled.

Using the methods and concepts of contemporary information-processing psychology (or cognitive science) the authors develop a series of artificial-intelligence programs that can simulate the human thought processes used to discover scientific laws. The programs--BACON, DALTON, GLAUBER, and STAHL--are all largely data-driven, that is, when presented with series of chemical or physical measurements they search for uniformities and linking elements, generating and checking hypotheses and creating new concepts as they go along.

Scientific Discovery examines the nature of scientific research and reviews the arguments for and against a normative theory of discovery; describes the evolution of the BACON programs, which discover quantitative empirical laws and invent new concepts; presents programs that discover laws in qualitative and quantitative data; and ties the results together, suggesting how a combined and extended program might find research problems, invent new instruments, and invent appropriate problem representations. Numerous prominent historical examples of discoveries from physics and chemistry are used as tests for the programs and anchor the discussion concretely in the history of science.


What people are saying - Write a review

User Review - Flag as inappropriate

Creative processes of scientific dicoveries.


What Is Scientific Discovery?
On the Possibility of a Normative Theory of Discovery
The BACON Programs
Intrinsic Properties and Common Divisors
Symmetry and Conservation
Qualitative Laws and Models
Constructing Componential Models
Formulating Structural Models
Putting the Picture Together
Discovering Problems and Representations
Name Index

Common terms and phrases

References to this book

All Book Search results »

About the author (1987)

Pat Langley is Associate Professor, Department of Information and Computer Science, University of California, Irvine.

Herbert Simon is Professor of Psychology at Carnegie-Mellon University. He was awarded the Nobel Prize in economics in 1978.

Bibliographic information