Semiconductor Nanolasers4.4 Motivation for 3D Confined Coaxial Nanolasers -- 4.5 Design and Fabrication of Optically Pumped Coaxial Nanolasers -- 4.6 Emission Characterization of High [beta]-factor Coaxial Nanolasers -- 4.7 Emission Characterization of Unity [beta]-factor Coaxial Nanolasers -- 4.8 Rate Equation Analysis of Unity [beta]-factor Coaxial Nanolasers -- 4.9 Perspective on Plasmonic Mode Nanolasers -- 5 Antenna-inspired Nano-patch Lasers -- 5.1 Optical Mode and Radiation Pattern of Nanopatch Lasers -- 5.2 Experimental Demonstration of Optically Pumped Nanopatch Laser -- 5.3 Toward Low-threshold, Engineerable Radiation Pattern, and Electrical Pumping -- 6 Active Medium for Semiconductor Nanolasers: MQW vs. Bulk Gain -- 6.1 Current Injection in Semiconductor Nanolasers -- 6.2 Optical Cavity and Material Gain Optimization -- 6.3 Reservoir Model for Semiconductor Lasers -- 6.4 Laser Rate-equation Analysis with the Reservoir Model -- 6.5 Discussion -- 7 Electrically Pumped Nanolasers -- 7.1 Optical Mode Design with Realistic Geometrical Parameters -- 7.2 Cylindrical Nanolasers with InP Undercut -- 7.3 Cylindrical Nanolasers without InP Undercut -- 7.4 Cubical Nanolasers without InP Undercut -- 8 Multi-physics Design for Nanolasers -- 8.1 Simulation of Nanolasers' Electrical and Thermal Performance -- 8.1.1 Ohmic Resistance -- 8.1.2 Calculation of Self-heating -- 8.1.3 Simulation of Nanolaser Heat Dissipation -- 8.2 Choice and Fabrication Techniques of Dielectric Material for Thermal Management -- 8.3 Comparison of Device Performance with Different Dielectric Shield Material -- 8.3.1 Optical Performance -- 8.3.2 Electrical and Thermal Performance -- 8.3.3 Discussions -- 8.4 Preliminary Experimental Validation and Analysis with Al[sub(2)]O[sub (3)] Shield -- 8.4.1 Experimental Validation and Optical Mode Analysis -- 8.4.2 Electrical and Thermal Analysis of Measured Device |
Contents
Introduction | 1 |
Photonic Mode Metaldielectricmetalbased Nanolasers | 36 |
Purcell Effect and the Evaluation of Purcell and Spontaneous Emission | 65 |
Plasmonic Mode Metaldielectricmetalbased Nanolasers | 91 |
Antennainspired Nanopatch Lasers | 119 |
MQW vs Bulk Gain | 132 |
Electrically Pumped Nanolasers | 146 |
Multiphysics Design for Nanolasers | 168 |
Inversionless Excitonpolariton Microlaser | 214 |
Photonic Integrated Circuits and Other | 231 |
Appendix A Spontaneous Emission in Free Space and Cavity | 270 |
Modeling Thermal Effects in Nanolasers | 283 |
Constriction Resistance and Current Crowding in Nanolasers | 290 |
302 | |
321 | |
Cavityfree Nanolaser | 202 |
Other editions - View all
Common terms and phrases
America OSA bandwidth behavior bulk calculated carrier density cavity modes coupling device dielectric dielectric shield dissipation efficiency electric field electrically pumped Electronics Engineers IEEE emitter energy Equation etching exciton fabrication frequency gain medium gain region III-V increase InGaAs InGaAsP injection current integrated interface Joule heating lasing mode lasing threshold layer light-light curve linewidth loss Macmillan Publishers Ltd material gain metal metal-clad mode confinement modulation nanolasers nanopatch nanowire optical mode Optical Society optically pumped output power parameters permission from Institute permission from Macmillan permission from Optical permittivity photonic photonic crystal plug polariton propagation pump power Purcell factor Q factor quantum rcore recombination refractive index Reprinted from reference room temperature Schematic Section self-heating semiconductor lasers shown in Figure sidewall angle sidewall tilt silicon simulation SiO2 Society of America spectral spontaneous emission structure substrate subwavelength threshold current threshold gain VCSEL waveguide wavelength