## Total Positivity, Volume 1 |

### What people are saying - Write a review

User Review - Flag as inappropriate

total positivity of generalized gamma distribution

### Contents

Some Matrix and Determinant Formulas | 6 |

Various Formulations of Sign Regularity and Their Relationships | 46 |

Examples and Applications | 98 |

Smoothness Properties of SignRegular Functions | 157 |

VariationDiminishing Transformations and SignRegular Kernels | 217 |

Applications of the VariationDiminishing Property | 274 |

Polya Frequency Functions | 332 |

Polya Frequency Sequences | 393 |

Convolution Cyclic VariationDiminishing Transformations | 455 |

Differential Operators and Total Positivity | 501 |

567 | |

575 | |

### Common terms and phrases

absolutely continuous analogous apply arbitrary argument assertion assume basic composition formula boundary conditions bounded Chapter coefficients column composition formula 1.2 conclude Consider constant continuous converges convex convolution Corollary corresponding deduce defined definition denote density function derivative determinant determinant inequality differential operator example exists exponential polynomial fact finite fixed following theorem Green's function holds implies induction hypothesis infer integral Karlin kernel kernel K(x Laplace transform Lemma linear matrix multiplicities nonnegative nonnull nonzero obtain one-sided PF sequence open interval PF density PF function points Polya frequency polynomial of degree proof of Theorem prove random variable real line representation respect result right-continuous righthand side satisfying Schoenberg semiexponential polynomial sigma-finite sigma-finite measure sign changes sign-regular spline strict inequality Suppose Sylvester's identity T-system Theorem 3.1 theory totally positive trigonometric polynomial valid vanishes variation-diminishing property vector Wronskian zero