Reaction and Molecular Dynamics: Proceedings of the European School on Computational Chemistry, Perugia, Italy, July (1999)A. Lagana, A. Riganelli The amazing growth of computational resources has made possible the modeling of complex chemical processes. To develop these models one needs to proceed from rigorous theoretical methods to approximate ones by exploiting the potential of innovative architectural features of modern concurrent processors. This book reviews some of the most advanced theoretical approaches in the field of molecular reaction dynamics in order to cope as rigorously as possible with the complexity of real systems. |
Contents
I | xiii |
III | xiv |
IV | 2 |
V | 5 |
VI | 6 |
VII | 8 |
VIII | 13 |
X | 16 |
XCVI | 151 |
XCVII | 154 |
XCIX | 155 |
CI | 156 |
CII | 157 |
CIII | 160 |
CIV | 162 |
CV | 166 |
XI | 18 |
XII | 24 |
XIII | 28 |
XIV | 31 |
XVI | 33 |
XVII | 34 |
XVIII | 37 |
XX | 38 |
XXI | 39 |
XXII | 40 |
XXIV | 42 |
XXV | 44 |
XXVI | 45 |
XXVIII | 51 |
XXIX | 55 |
XXXI | 58 |
XXXII | 62 |
XXXIII | 68 |
XXXIV | 69 |
XXXV | 72 |
XXXVI | 73 |
XXXVII | 74 |
XXXVIII | 75 |
XXXIX | 76 |
XLI | 77 |
XLII | 78 |
XLIV | 79 |
XLV | 80 |
XLVI | 81 |
XLVII | 82 |
XLIX | 83 |
L | 84 |
LII | 86 |
LIV | 88 |
LV | 90 |
LVI | 91 |
LVII | 92 |
LVIII | 94 |
LIX | 97 |
LX | 99 |
LXII | 100 |
LXIII | 103 |
LXIV | 104 |
LXV | 109 |
LXVI | 111 |
LXVII | 113 |
LXIX | 114 |
LXX | 118 |
LXXI | 120 |
LXXII | 123 |
LXXIII | 124 |
LXXIV | 126 |
LXXV | 128 |
LXXVI | 129 |
LXXVIII | 130 |
LXXIX | 132 |
LXXX | 133 |
LXXXI | 134 |
LXXXII | 135 |
LXXXIV | 136 |
LXXXV | 139 |
LXXXVI | 141 |
LXXXVII | 142 |
LXXXIX | 143 |
XC | 144 |
XCI | 145 |
XCII | 148 |
XCV | 150 |
CVI | 167 |
CVII | 168 |
CVIII | 170 |
CX | 171 |
CXI | 173 |
CXII | 175 |
CXIII | 177 |
CXIV | 178 |
CXV | 180 |
CXVII | 181 |
CXVIII | 182 |
CXIX | 184 |
CXX | 185 |
CXXI | 186 |
CXXIII | 187 |
CXXIV | 191 |
CXXVI | 194 |
CXXVII | 197 |
CXXVIII | 200 |
CXXIX | 204 |
CXXX | 207 |
CXXXI | 208 |
CXXXII | 209 |
CXXXIII | 211 |
CXXXV | 212 |
CXXXVII | 213 |
CXXXVIII | 214 |
CXXXIX | 215 |
CXL | 217 |
CXLII | 220 |
CXLIV | 222 |
CXLV | 224 |
CXLVI | 227 |
CXLVII | 230 |
CXLVIII | 233 |
CXLIX | 237 |
CL | 240 |
CLII | 242 |
CLIII | 244 |
CLIV | 246 |
CLVI | 248 |
CLVII | 251 |
CLVIII | 255 |
CLX | 256 |
CLXI | 260 |
CLXII | 267 |
CLXIII | 271 |
CLXV | 273 |
CLXVI | 276 |
CLXVII | 277 |
CLXIX | 278 |
CLXX | 281 |
CLXXI | 284 |
CLXXII | 287 |
| 289 | |
CLXXIV | 291 |
CLXXV | 293 |
| 294 | |
CLXXIX | 295 |
CLXXX | 297 |
| 298 | |
CLXXXIII | 299 |
CLXXXIV | 300 |
CLXXXV | 301 |
| 302 | |
CLXXXVIII | 303 |
CLXXXIX | 304 |
Other editions - View all
Common terms and phrases
A. J. C. Varandas ab initio adiabatic angle applications approach approximation asymptotic atoms basis functions basis set calculations channel Chem chemical Chemistry classical coefficients collision computational conical intersection coupling cross sections D. G. Truhlar DAFs defined degrees of freedom delta sequence derivative diatomic distributions dynamics eigenvalues electronic expansion experimental Fourier G. C. Schatz G. G. Balint-Kurti geometry global Hamiltonian hyperspherical hyperspherical coordinates initial wavepacket initio points integration interaction interpolation J-shifting Jacobi coordinates kcal/mol kinetic Laganà Lett matrix method molecular molecule motion obtained parallel parameters Phys potential energy surface potential surface problem propagation quantum number rate constant reactants reaction probability reactive scattering region rotational Schrödinger equation skeletons spline structure symmetric thermal rate constant time-dependent tion total angular momentum total energy transition state theory translational energy vibrational wave function wavefunction wavepacket zeolite Zhang


